
 

 

CALCULUS ONE OVER COFFEE 

 

A Textbook and User-Friendly Guide to Calculus One 



PREFACE 

 
The purpose of this book was originally meant to be a companion to a traditional Calculus textbook.  It 
was not meant to replace a formal textbook, while being a bit more than just a book of problem sets.  Its 
aim was to clarify some difficult concepts, and to provide some easier exercises in addition to the 
traditional classroom textbook.  After I starting writing it, I decided to make it into an actual textbook.  It 
can still serve as a companion to a different text, but it can also perform as a standalone text as well. 
After teaching Calculus for close to two decades, I have found most students struggle with the typical 
formalism in a standard textbook.  My students have been looking for more user-friendly language along 
with some easier warm-up exercises.  My hope is that this text will provide that gap for students.  This 
book has all the formal definitions, and proofs as necessary, but it also includes more user-friendly 
language, and a bit of an informal attitude along with the standard traditional formalism.  Its original 
title was A Calculus Companion, which I later changed to Calculus One Over Coffee. I feel that it is more 
than a companion text, but the new title still conveys a more casual (and hopefully more 
understandable) approach to Calculus One.  



 
CHAPTER 0 

CALCULUS MOTIVATION 

 

It is my understanding and observation from pedagogical research and experience that for students to 
master a subject, they must be properly motivated. 

 

In this chapter, we will explore what motivated the invention of Calculus along with some practical 
applications.  I believe by understanding the history and practical uses for the subject, we will excite and 
motivate most students to want to study it in its entirety. 

 

We start with the history of Calculus invented by Sir Isaac Newton (along with Gottfried Wilhelm 
Leibnitz).  Sir Isaac Newton was born in England in 1642 to the yeoman class.  He lived from 1642-1727. 
During his life he witnessed the Civil Wars and Interregnum, along with the Restoration of the Stuarts 
and the Glorious Revolution. 

Descartes had great influence over Newton.  It involved mathematics and nature, though Newton 
disagreed with many of Descartes’s views such as areas of epistemology and the theory of matter. 

Newton had an interest in chemistry including alchemy (a subject in extra-natural substance), ancient 
history, and Christianity. 

Newton believed “the prime of my age for invention” was during 1665 and 1666.  In mechanics, there 
was an entry dated January 20, 1664 in his “Waste Book”.  The “Waste Book” was a book that contained 
many of his early mathematics.  He developed a comprehensive mathematical theory about derivatives 
and tangents (rates of change that we will discuss soon), along with integrals (areas under curves also to 
be discussed). 

It is believed that in 1684-1685, Newton abandoned the tract De motu, and started the Principia.  The 
formal title is “Philosophiae Naturalis Principia Mathematica (Latin), or Mathematical Principles of 
Natural Philosophy (English), which we frequently refer to as the Principia.  This work was 3 books, first 
published in July 1687.  They included Newton’s laws of motion, and formed the basis for classical 
mechanics, Newton’s law of universal gravitation, and Kepler’s laws of planetary motion.  The language 
we are used to, and that will be developed in the text, were largely absent in this work.  The 
mathematics in the Principia were less classical than Newton cared to admit.  In response to confused 
students, he translated the geometry into algebraic language for them. 

He was knighted in 1705 by Queen Anne.  It is believed to be more politically based, than it was based 
on his scientific achievements. 

Newton was also a clever illustrator including some geometrical drawings, and illustrations from Sacred 
Scriptures referred to as “mathematical magic”!   



Newton died in his sleep in March, 1727.  Mercury was found in his hair after his death.  Voltaire 
attended his funeral, who called it the funeral of a king who had done well by his subjects. 

 

Gottfried Wilhelm Leibnitz was born in Leipzig on July 3, 1646.  He lived from 1646-1716. 

Leibnitz was a philosopher who was known as the “man of principles”.  He was known for a list of 10 
principles.  Leibnitz was known to be more of a philosopher with Newton being more of a scientist, and 
they were at odds 

He had an early work called Confessio natuae contra Atheistas, defending “God’s cause”.  He defended 
Christian doctrine with his idea of a natural theology.   

 

Leibnitz and Newton had a great calculus controversy.  In 1699, the discovery of calculus became an 
open controversy.  In 1685, a mathematician named John Wallis who wrote Algebra, had information 
extracted from Newton’s First Letter to Leibnitz in June of 1676.  Wallis also had a copy of the Second 
Letter.  In 1692, Newton sent Wallis information on the method of fluxions (which included problems of 
tangents, extrema, and quadratures of curves), which Wallis printed in his Algebra. 

Nine years after Leibnitz, and eight years after John Craige (one of the first British mathematicians who 
sought out Newton at Cambridge), Newton’s calculus was now before the world. 

Newton’s work did not differ from differential calculus, except he called a differential a fluxion; and he 
called an integral a fluent.  Johann Bernoulli (Leibnitz’s friend) told Leibnitz that he did not know if 
Newton may have fabricated his own method after seeing his friend’s (Leibnitz’s) calculus. 

Leibnitz’s reaction to the Principia was that it was outstanding in regards to its quantitative analysis of 
physical forces.  He began to compose a different, neo-Cartesian account of orbital forces.  He wrote a 
paper called “Tentamen de motuum coelestium causis”, which may have been an attempt to invalidate 
the reasoning in the Principia and its concepts of real forces. 

Newton suspected Leibnitz had lied, and that his theory was a “mirror-image” of his own work.  He 
thought of Leibnitz’s physics as contorted, redundant, and geometrically unsound. 

Around 1699, after Leibnitz printed the third volume of Calculus Differentials’, John Wallis noticed that 
the Leibnitzian school of mathematics was moving ahead of the Newtonians.  The Bernoulli brothers 
(Johann and Jakob) were not only brilliant mathematicians, but also big promotors of Leibnitz’s calculus. 

The Principia gave Newton a great reputation.  Twenty years later, Newton had the intellectual respect 
of all Europe, and the idea that he had stolen his calculus ideas from Leibnitz were barely mentioned. 

 

 

 

 



Let us now discuss some practical applications for Calculus.  We see Calculus was invented to better 
understand the world and its behavior.  We understand that it explains very precisely the laws of 
motion, and allows us to both measure and make predictions about our surroundings.   

 

We will now discuss three practical and important applications of Calculus: 

1) Velocity and Acceleration 
2) How to maximize Profit 
3) How to find the area under a curve 

 

First, we  visit the velocity problem.  Velocity is a common problem, and should be familiar to most 
readers.  We commonly think of velocity as speed, whereas speed is actually the absolute value of 
velocity.  Velocity can be positive or negative, depending on one’s direction.  We understand velocity to 
be the rate of change of distance.  We will first consider average velocity, which will be a linear graph 

with a constant slope, i.e. 𝑣𝑣 = ∆𝑑𝑑
∆𝑡𝑡

, where 𝑣𝑣 is the slope of the line that connects two points on a distance 
vs time graph.  All of this is well and good, as you have already learned how to calculate an average rate 
of change of a function in your algebra class.  You may ask, what does all of this have to do with 
Calculus?  Notice that all we have talked about thus far are average rates of change.  Calculus will add to 
what we know about rates of change, giving us information about instantaneous rates of change.  For 
example, let’s go back to our velocity problem:  Using Calculus, we will be able to determine our 
instantaneous velocity at any time that we are interested in, under certain conditions that will be 
fleshed out in great detail in a future section.  Next, we can think about the rate of change of velocity, 
which will give us acceleration.  We will use similar methods to obtain information about instantaneous 
acceleration using similar methods of Calculus again. 

 

Let us observe the graph below.  We will assume the graph to be a graph of distance vs time.  Let us now 
calculate the average velocity between two different points in time.  We choose the average velocity 
between 𝑡𝑡 = 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to 𝑡𝑡 = 5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠:  (We let 𝑥𝑥 respresent time, and 𝑓𝑓(𝑥𝑥) respresent distance). 

 



We observe the slope of the blue line that connects the times 𝑥𝑥 = 1 and 𝑥𝑥 = 5 represents the average 

velocity of this distance graph between 𝑡𝑡 = 1𝑠𝑠 and 𝑡𝑡 = 5𝑠𝑠.  𝑣𝑣 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

= 52−12

5−1
= 24

4
= 6 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
.  This 

should be familiar from your Algebra class. 

 

Now let’s look at the graph below.  The slope of the blue line now represents the instantaneous velocity 
of the function at 𝑡𝑡 = 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  We will need Calculus to derive this result.  (2 different views). 

 

 

 

 

Perhaps you are not interested in Physics in general, or velocity in particular.  But, let’s say, you are 
interested in Business.  Differential Calculus can also be used to find out how to maximize your profit 
given an appropriate function. Both maximization and velocity are applications of Differential Calculus. 

 

 



Thirdly, we might want to find the area under the curve of a graph.  We can already easily do this for 
functions like 𝑦𝑦 = 2, which is simply the area of a rectangle, 𝑏𝑏ℎ; or for a function like 𝑦𝑦 = 𝑥𝑥, which is the 
area of a triangle, 1

2
𝑏𝑏ℎ.  See the graphs below. 

 

 

 

 

We can easily calculate the area under the curve (and above the x-axis) of these functions using basic 
geometry. 

 

 

But now let’s look at another fairly simple function: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 from 𝑥𝑥 = 0 to 𝑥𝑥 = 5: 

 

 



 

This function is rather simple, but look at the difficulty of calculating the area under this curve (and 
above the x-axis).  With our knowledge of geometry, this will be quite difficult.  We will need Calculus in 
order to accomplish this goal. 

 

Some practical applications of finding the area under a curve might be to find distance from knowing 
velocity. (We already discussed velocity from distance –  it was differential calculus).  Other applications 
for finding the area under a curve could be, e.g., the work done by an object.  You can also find the total 
profit, if you know the marginal profit of a function.   These three applications are applications of 
Integral Calculus, which is related to the area problem. 

  



EXERCISES: 

 

1) Find the average rates of change for the following functions:  (i.e. in this case the average 
velocity): 
 
a) 𝑠𝑠(𝑡𝑡) = 𝑡𝑡3 + 5𝑡𝑡2 − 1,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡 = 5: 

 

 

 

 

b) 𝑠𝑠(𝑡𝑡) = 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 0 𝑡𝑡𝑡𝑡 𝑡𝑡 = 3𝜋𝜋
4

: 

 

 

 

 

2) Find the velocity of the following function when 𝑡𝑡 = 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for the function 𝑣𝑣(𝑡𝑡) = 3𝑡𝑡2 − 4: 

 

 

 

 

3) Find the area of the following objects: 

 

a)  



b) 𝑥𝑥2 + 𝑦𝑦2 = 4 

 
 
 

 
 

4) Find the total Cost, Revenue and Profit if the total cost is given by 𝐶𝐶(𝑥𝑥) = 5𝑥𝑥 + 1, the total Revenue is 
given by 𝑅𝑅(𝑥𝑥) = 0.5𝑥𝑥2 + 10𝑥𝑥 − 1 when you have produced 50 items.



CHAPTER 1 
SECTION 1 

 
LIMITS 

 
Before we begin with an explanation of limits and the formalism that ensues, let us motivate why we 
would need such a concept.  Without the concept and formalism of a limit, we cannot ever develop the 
ideas needed to solve the problems in Chapter 0. 

 
Let us think about what we think of the word Limit.  It should invoke getting close to something. 
 
We will start with a simple story.  Keep in mind that this is not a precise or formal explanation for a limit.  
It merely serves to get your mind thinking in this direction. 
 
I will start with you thinking about the building you are in.  In reality, there are an infinite number of 
paths you could take to reach the building. (This would be a Calculus 3 problem).  So for our purposes, 
imagine you can only approach the building from two paths, from the right or from the left.  Let’s say 
that either path you take leads you to the front door.  You can never reach the door, but instead, 
become as close as you can without touching it.  Since both paths lead to the front door, we will 
informally call that the limit.  But let’s imagine that the right path leads to the front door, and the left 
path leads to the back door.  We will say the limit does not exist, because each path led you to a 
different place.  Now let’s imagine the left path cannot lead you close to the building.  Imagine a giant 
trench that cannot be crossed or traversed around to get to the building.  The limit in this case also does 
not exist, because the left approach does not exist. 
 
One important fact to remember when evaluating limits is that you never reach the value, you just get 
arbitrarily (or infinitesimally) close, as close as you can possibly get without touching the value. 
 
Let us now consider the intuitive definition of a limit.  (We will study the precise definition of a limit in 
Section 3). 
 

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = 𝐿𝐿. 

 
This reads the limit as 𝑥𝑥 approaches 𝑎𝑎 of 𝑓𝑓(𝑥𝑥) equals 𝐿𝐿. 
 
What this means is that we can make 𝑓𝑓(𝑥𝑥) as close as we want to 𝐿𝐿 by making 𝑥𝑥 as close to 𝑎𝑎 as we 
need to, i.e. arbitrarily close to 𝑎𝑎 on either side of 𝑎𝑎 without ever touching 𝑎𝑎. 
 
This may look unfamiliar to you.  In fact, if you have not had Calculus, the whole idea of the limit may 
seem foreign to you.   
 
Something to be noted here:  𝑎𝑎 is the 𝑥𝑥-value, and 𝐿𝐿 is the 𝑦𝑦-value.  This may seem obvious from the 
definition, but I have found many students struggle with this concept. 
 



Let us now define right-handed and left-handed limits.  This will introduce more unfamiliar notation. 
lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 

 
Is the left-handed limit, and it reads the limit as 𝑥𝑥 approaches 𝑎𝑎 from the left of 𝑓𝑓(𝑥𝑥) equals 𝐿𝐿.  What 
this means is that we can make 𝑓𝑓(𝑥𝑥) as close as we want to 𝐿𝐿 by making 𝑥𝑥 as close to 𝑎𝑎 as we need to, 
i.e. arbitrarily close to 𝑎𝑎 from the left, where 𝑥𝑥 < 𝑎𝑎. 
Notice that there is a minus sign as a superscript on 𝑎𝑎.  This has nothing to do with the sign of the 𝑎𝑎.  It 
merely indicates which direction you are coming from. 
 
 
 

lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 

 
Is the right-handed limit, and it reads the limit as 𝑥𝑥 approaches 𝑎𝑎 from the right of 𝑓𝑓(𝑥𝑥) equals 𝐿𝐿.  This 
means is that we can make 𝑓𝑓(𝑥𝑥) as close as we want to 𝐿𝐿 by making 𝑥𝑥 as close to 𝑎𝑎 as we need to, i.e. 
arbitrarily close to 𝑎𝑎 from the right, where 𝑥𝑥 > 𝑎𝑎. 
 
 
Another thing that students frequently misunderstand is that the ± sign indicates which direction you 
are coming from, not which direction you are heading toward. 
 
We now have a theorem: 
 

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 ⇔ lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 = lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = 𝐿𝐿. 

 
We see the left-handed and right-handed limits must be the same for the limit to exist.  As we discussed 
in our rather ad hoc, non-formal example. (Note that ⇔ means if and only if:  If the left hand side is 
true, then the right hand side is true and vice versa.  We will use this notation in this text). 
 
Let us consider this graph: 
 

 



Try to evaluate lim
𝑥𝑥→0−

𝑓𝑓(𝑥𝑥).  We observe that the 𝑦𝑦-value is 2, when you approach 0 from the left.  

Therefore, lim
𝑥𝑥→0−

𝑓𝑓(𝑥𝑥) = 2.  Let us now look at lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥).  We see that the 𝑦𝑦-value is as close as you can 

get to 0 when you are as close to 𝑥𝑥 = 0 from the right-side.  Therefore, lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥) = 0.  We can now say 

that lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥) Does Not Exist.  (We also observe that 𝑓𝑓(0) = 2.  This fact has no bearing whatsoever on 

our limit, since a limit never reaches the function value on either side). 
 
Now let’s look at this graph: 
 

   

Let us calculate lim
𝑥𝑥→1

𝑓𝑓(𝑥𝑥) 

lim
𝑥𝑥→1−

𝑓𝑓(𝑥𝑥) = 3 = lim
𝑥𝑥→1+.

𝑓𝑓(𝑥𝑥).  We conclude lim
𝑥𝑥→1

𝑓𝑓(𝑥𝑥) = 3.  We note that 𝑓𝑓(1) does not exist and does 

not matter. 

Now, take a look at  lim
𝑥𝑥→5

𝑓𝑓(𝑥𝑥). Hopefully, you see that it exists, and equals 3. 

 

EXAMPLE: 

 

 



What is lim
𝑥𝑥→𝜋𝜋−

𝑓𝑓(𝑥𝑥)?  It equals 0.  And lim
𝑥𝑥→𝜋𝜋+

𝑓𝑓(𝑥𝑥)?  It is 9.  We also observe that 𝑓𝑓(𝜋𝜋) = 5.  What is the 

lim
𝑥𝑥→𝜋𝜋

𝑓𝑓(𝑥𝑥)?  It does not exist. 

 

NUMERICAL LIMITS:  We can also guess the value of a limit by substituting values closer and closer to 
𝑥𝑥 = 𝑎𝑎 into our calculator to see which value of 𝐿𝐿 we are getting close to. 

Example:  lim
𝑥𝑥→2

𝑥𝑥2−4
𝑥𝑥−2

:   

x f(x) 
1.9 3.9 
1.99 3.99 
1.999 3.999 
2.1 4.1 
2.01 4.01 
2.001 4.001 

 

What do you think the limit is?  We guess 4.  The closer we get to 𝑥𝑥 = 2, the closer we get to 𝑓𝑓(𝑥𝑥) = 4. 

 

INFINITE LIMITS: 

 

Let’s start with an example:  𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2

:  We now consider the lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥).  Let us take smaller and smaller 

values for 𝑥𝑥.  As 𝑥𝑥 becomes smaller, what happens to 𝑓𝑓(𝑥𝑥)?  We can plug smaller and smaller values of 𝑥𝑥 
into our calculator e.g.  For each smaller value of 𝑥𝑥, we observe 𝑓𝑓 becomes larger and larger.  We also 
observe that whether 𝑥𝑥 is either positive or negative, 𝑓𝑓 remains positive.  We know we cannot divide by 
0, but we have also learned that a limit never reaches the value, so there is not a problem here with 
taking a limit as 𝑥𝑥 → 0.  As 𝑥𝑥 becomes smaller and smaller, in fact, being as arbitrarily close to 0 as 
possible, that 𝑓𝑓 grows without bound.  We will say that lim

𝑥𝑥→0
𝑓𝑓(𝑥𝑥) = ∞.   

The graph of this function is below: 



 

 

So our intuitive definition of an infinite limit is lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = ∞, means the closer you get to 𝑥𝑥 → 𝑎𝑎 from 

either side, the larger 𝑓𝑓(𝑥𝑥) grows.  This implies we can make 𝑓𝑓(𝑥𝑥) as large as we want by getting 
sufficiently close to 𝑎𝑎.   

 

We can also take the case lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = −∞, which means the closer you get to 𝑥𝑥 → 𝑎𝑎 from either side, 

the larger 𝑓𝑓(𝑥𝑥) grows negatively.  E.g. 𝑓𝑓(𝑥𝑥) = − 1
𝑥𝑥2

  
 

 

 



We can also consider one-sided infinite limits: 

lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = −∞,  lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = −∞, lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = ∞, lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = ∞. 

An example of each: 

 

 

 

 

 

 



DEFINITION:  A vertical asymptote of 𝑓𝑓(𝑥𝑥) is the line 𝑥𝑥 = 𝑎𝑎, whenever at least one of the following is 
true: 

lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = −∞,  lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = −∞, lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = ∞, lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = ∞, lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = ∞, or lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = −∞ 

The above examples all had a vertical asymptote at 𝑥𝑥 = 0. 

 

EXAMPLE:  Now let’s consider an algebraic example of an infinite limit: 

Consider the function 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−1

: 

Let’s look at lim
𝑥𝑥→1−

𝑓𝑓(𝑥𝑥):  We observe that the denominator is close to zero, so the function will blow up 

(increase without bound):  We need to determine if it’s going to +∞, or −∞.  Since 𝑥𝑥 → 1−, 𝑓𝑓(𝑥𝑥) will be 
negative, therefore lim

𝑥𝑥→1−
𝑓𝑓(𝑥𝑥) = −∞.  Likewise lim

𝑥𝑥→1+
𝑓𝑓(𝑥𝑥) = ∞. 

 

EXAMPLE:  Now, consider the function 𝑓𝑓(𝑥𝑥) = 1
sin 𝑥𝑥

= csc 𝑥𝑥.  

 Lim
𝑥𝑥→0−

𝑓𝑓(𝑥𝑥) = −∞ 

Lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥) = ∞ 

Lim
𝑥𝑥→𝜋𝜋−

𝑓𝑓(𝑥𝑥) = ∞ 

Lim
𝑥𝑥→𝜋𝜋+

𝑓𝑓(𝑥𝑥) = −∞ 

Etc.  (It has an infinite number of infinite limits). 

 

EXAMPLE:  We also have 𝑓𝑓(𝑥𝑥) = ln(𝑥𝑥): 

 

 



 

Observe that lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥) = −∞, and lim
𝑥𝑥→0−

𝑓𝑓(𝑥𝑥) = DNE, as it is not in the domain of 𝑓𝑓. (DNE means Does 

Not Exist). 

 

STEPS TO FIND A VERTICAL ASYMPTOTE: 

1) Set the denominator equal to zero, and solve for 𝑥𝑥. 
Case 1:  There is no solution → there is no vertical asymptote.  Example 1

𝑥𝑥2+1
.  Since 𝑥𝑥2 + 1 has 

no real solutions, there is no vertical asymptote. 
Case 2:  You find a value or values for 𝑥𝑥, and it does not cancel a factor in the numerator.  Those 
are vertical asymptote(s).  Example:  1

𝑥𝑥2−1
 has two vertical asymptotes at 𝑥𝑥 = ±1. 

Case 3:  You have a solution, but it cancels a factor in the numerator.  This is a hole and not a 
vertical asymptote.  Example: 𝑥𝑥+1

𝑥𝑥2−1
 = 𝑥𝑥+1

(𝑥𝑥+1)(𝑥𝑥−1) has a hole at 𝑥𝑥 = −1 and a vertical asymptote at 

𝑥𝑥 = 1. 

  

 

  



 

 

 

EXERCISES 

1)  

 

Let us consider the graph above:   

a) Find lim
𝑥𝑥→1−

𝑓𝑓(𝑥𝑥): 
b) Find lim

𝑥𝑥→1+
𝑓𝑓(𝑥𝑥): 

c) Find lim
𝑥𝑥→1

𝑓𝑓(𝑥𝑥): 

d) Find lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥): 

 

2) Consider the graph above:  

 

a) Find lim
𝑥𝑥→𝜋𝜋−

𝑓𝑓(𝑥𝑥):  
b) Find lim

𝑥𝑥→𝜋𝜋+
𝑓𝑓(𝑥𝑥):  



c) Find 𝑓𝑓(𝜋𝜋): 
d) Find lim

𝑥𝑥→𝜋𝜋
𝑓𝑓(𝑥𝑥):  

e) Find lim
𝑥𝑥→4

𝑓𝑓(𝑥𝑥):  

f) Find 𝑓𝑓(4): 

 

3) Consider the graph: 

 

a) Find lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥): 

 
b) Find lim

𝑥𝑥→0−
𝑓𝑓(𝑥𝑥): 

 
c) Find lim

𝑥𝑥→0
𝑓𝑓(𝑥𝑥): 

 

 

 

4) Consider the graph: 
 

  
 



a) Find lim
𝑥𝑥→−2−

𝑓𝑓(𝑥𝑥):  

 
b) Find lim

𝑥𝑥→−2+
𝑓𝑓(𝑥𝑥): 

 
c) Find lim

𝑥𝑥→−2
𝑓𝑓(𝑥𝑥): 

 
5) tan (𝑥𝑥) 

 
 
a) Find lim

𝑥𝑥→𝜋𝜋−
𝑓𝑓(𝑥𝑥): 

 

b) Find lim
𝑥𝑥→𝜋𝜋+

𝑓𝑓(𝑥𝑥): 

 
 
c) Find lim

𝑥𝑥→𝜋𝜋
𝑓𝑓(𝑥𝑥): 

 

6) Guess the following limit: 

lim
𝑥𝑥→3

𝑥𝑥2−9
𝑥𝑥−3

:   

x f(x) 
2.9 5.9 
2.99 5.99 
2.999 5.999 
3.1 6.1 
3.01 6.01 
3.001 6.001 



 

 

Find the following infinite limits: 

 

7) lim
𝑥𝑥→1+

3
𝑥𝑥2−1

: 

 

8) lim
𝑥𝑥→−2+

2
√𝑥𝑥+2

: 

 

9) lim
𝑥𝑥→1+

𝑥𝑥+1
𝑥𝑥−1

: 

 

10) lim
𝑥𝑥→4−

√𝑥𝑥
𝑥𝑥−4

: 

 

11) lim
𝑥𝑥→𝜋𝜋

2
+

tan(𝑥𝑥) : 

 
 

12) lim
𝑥𝑥→1+

ln (𝑥𝑥 − 1): 

 

Find the following vertical asymptotes: 

 

13) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−7

: 
 

14) 𝑓𝑓(𝑥𝑥) = 3
𝑥𝑥2−5𝑥𝑥+6

 

 
15) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−2

𝑥𝑥2+2𝑥𝑥−8
 

 
16) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+1

𝑥𝑥3+1
 

 
17) 𝑓𝑓(𝑥𝑥) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 0 ≤ 𝑥𝑥 ≤ 2𝜋𝜋 

 

 



CHAPTER 1 
SECTION 2 

 
LIMITS USING LIMIT LAWS 

(ALGEBRAIC LIMITS) 
 

In the previous section, we learned about limits, and took a graphical approach to our understanding.  In 
this section, we will learn how to calculate limits given a function without a graph.  
 
Let us first list all the limit laws: 
 

Let 𝑐𝑐 be a constant, and let  lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)  and  lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) exist.  Then the following are true: 

 
1) lim [

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥)] = lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) ± lim

𝑥𝑥→𝑎𝑎
𝑔𝑔(𝑥𝑥) 

2) lim
𝑥𝑥→𝑎𝑎

𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑐𝑐 lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) 

3) lim
𝑥𝑥→𝑎𝑎

[𝑓𝑓(𝑥𝑥) 𝑔𝑔(𝑥𝑥)] = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) 

4) lim
𝑥𝑥→𝑎𝑎

�𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥)� =  

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)

lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) 

5) lim
𝑥𝑥→𝑎𝑎

[𝑓𝑓(𝑥𝑥)]𝑛𝑛 = �lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)�
𝑛𝑛

 

6) lim
𝑥𝑥→𝑎𝑎

𝑐𝑐 = 𝑐𝑐 

7) lim
𝑥𝑥→𝑎𝑎

𝑥𝑥 = 𝑎𝑎 

8) lim
𝑥𝑥→𝑎𝑎

𝑥𝑥𝑛𝑛 = 𝑎𝑎𝑛𝑛 where 𝑛𝑛 is a positive integer 

9) lim
𝑥𝑥→𝑎𝑎

√𝑥𝑥𝑛𝑛 = √𝑎𝑎𝑛𝑛  where 𝑛𝑛 is a positive integer, and if 𝑛𝑛 is even, 𝑎𝑎 > 0 

10) lim
𝑥𝑥→𝑎𝑎

�𝑓𝑓(𝑥𝑥)𝑛𝑛 = �𝑓𝑓(𝑎𝑎)𝑛𝑛  where 𝑛𝑛 is a positive integer, and if 𝑛𝑛 is even, lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) > 0 

Next, we will go over the steps to find a limit using limit laws: 

 

1)  Substitute 𝑥𝑥 with 𝑎𝑎. 
 

Case I:  You get a finite number:  You are done, and that is the limit. 
 
Case 2:  You get a finite number in the numerator, and approach zero in the denominator:  
You have an infinite limit.  Use the techniques from the previous section to determine the 
limit. (Hint it will be either +∞ or −∞). 
 
Case 3:  You get a form of  0

0
.  This is considered an indeterminate form.  (Note:  at first glance, 

you may think this case is undefined, since you know we cannot divide by zero. Recall that 
with a limit, you never reach the value, so this is indeterminate rather than undefined.  The 
limit may or may not exist).  When you get this form, you need to manipulate the function to 
get it out of this form, e.g. factoring and canceling. If 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) when 𝑥𝑥 = 𝑎𝑎, then 



lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) if the limit exists.  This allows us to simplify our limit, when 𝑥𝑥 = 𝑎𝑎 gives 

us an indeterminate form.  Since we never reach the value, we can simply cancel.  We then 
recalculate the limit. 
 
There can also be other indeterminate forms such as ∞

∞
,∞−∞, and more.  We will deal with 

these individually. 
 

Case 1 Example:  Find lim
𝑥𝑥→2

𝑥𝑥2 − 2𝑥𝑥 + 4:  We substitute 2 for 𝑥𝑥 and get 4. 

 

Case 2 Example:  Find lim
𝑥𝑥→0

1
𝑥𝑥2

:  We substitute 0 for 𝑥𝑥 and we get ∞, as we saw in the previous section. 

  

Case 3 Example:  Find lim
𝑥𝑥→2

𝑥𝑥−2
𝑥𝑥2−4

.  We get a form of 0
0
 here.  We notice that the function is undefined at 

𝑥𝑥 = 2.  This does not pose a problem for us, since we are evaluating a limit, and not evaluating 𝑓𝑓(2).  We 
can factor the bottom into (𝑥𝑥 − 2)(𝑥𝑥 + 2), giving us lim

𝑥𝑥→2
1

𝑥𝑥+2
= 1

4
. 

 

Example:  Find lim
𝑥𝑥→4

𝑥𝑥−4
√𝑥𝑥−2

.  This is another form of 0
0
.  Again, we must factor.  This becomes 

lim
𝑥𝑥→4

(√𝑥𝑥−2)(√𝑥𝑥+2)
√𝑥𝑥−2

= lim
𝑥𝑥→4

√𝑥𝑥 + 2 = 4. 

 

Example:  Find lim
𝑡𝑡→0

√𝑡𝑡+1−1
𝑡𝑡

.  Again we have form of 0
0
.  In this case we will multiply numerator and 

denominator by the conjugate to simplify our expression.  lim
𝑡𝑡→0

√𝑡𝑡+1−1
𝑡𝑡

=

lim
𝑡𝑡→0

√𝑡𝑡+1−1
𝑡𝑡

∙ √𝑡𝑡+1+1
√𝑡𝑡+1+1

= lim
𝑡𝑡→0

𝑡𝑡
𝑡𝑡(√𝑡𝑡+1+1)

 = lim
𝑡𝑡→0

1
√𝑡𝑡+1+1

= 1
2

. 

 

Example:  Let us now consider a limit that has the form of ,∞−∞.  This is another indeterminate form 
that will be new to us.  lim

𝑥𝑥→0+
1

𝑥𝑥2+𝑥𝑥
− 1

𝑥𝑥
 is of this form.  The first thing that comes to mind is to find a common 

denominator:  We get lim
𝑥𝑥→0+

−𝑥𝑥
𝑥𝑥2+𝑥𝑥

= lim
𝑥𝑥→0+

− 1
𝑥𝑥+1

= −1. 

 

Example:  Let us consider lim
𝑥𝑥→0+

sin �1
𝑥𝑥
� :  We observe that this is where the sine function is approaching 

∞.  What does this mean?  We know that the sine function oscillates indefinitely between -1 and 1, so it 
never settles on any value as you approach ±∞. We determine this limit does not exist. 

 



Theorem:  If 𝑓𝑓(𝑥𝑥) ≤ 𝑔𝑔(𝑥𝑥) when 𝑥𝑥 approaches 𝑎𝑎 (except possibly at 𝑎𝑎), and both limits exist , then 
lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) ≤ lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥). 

 

 

 

 

Squeeze Theorem:  If 𝑓𝑓(𝑥𝑥) ≤ 𝑔𝑔(𝑥𝑥) ≤ ℎ(𝑥𝑥) when 𝑥𝑥 approaches 𝑎𝑎 (except possibly at 𝑎𝑎), and lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) =
lim
𝑥𝑥→𝑎𝑎

ℎ(𝑥𝑥) = 𝐿𝐿, then lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) = 𝐿𝐿. 

 

 

You should be able to see from the above graph, that all three functions have the same limit (and in this 
case, the same function value) at 𝑥𝑥 = 0. 

 

Example:  If 2 ≤ 𝑓𝑓(𝑥𝑥) ≤ 𝑥𝑥2 + 2 for all 𝑥𝑥, find lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥).  We use the Squeeze Theorem.  We observe 𝑓𝑓(𝑥𝑥) 

meets the first condition for the Squeeze Theorem. Next, we calculate the limits on the LHS, and the RHS 
of 𝑓𝑓.  The lim

𝑥𝑥→0
2 = 2,  and, lim

𝑥𝑥→0
𝑥𝑥2 + 2 = 2.  Therefore, lim

𝑥𝑥→0
𝑓𝑓(𝑥𝑥) = 2  by the Squeeze Theorem. 

 

Example:  Let us now look at lim
𝑥𝑥→0

𝑥𝑥 sin�1
𝑥𝑥
� .  We observed in a previous example that the lim

𝑥𝑥→0
sin�1

𝑥𝑥
� does 

not exist.  But with this example, we can use the Squeeze Theorem.  We observe that 

 0 ≤ sin�1
𝑥𝑥
� ≤ 1 for all 𝑥𝑥.  Next, we multiply all sides by 𝑥𝑥.  We now have 0 ≤ 𝑥𝑥 sin �1

𝑥𝑥
� ≤ 𝑥𝑥.  We take 

lim
𝑥𝑥→0

0 = 0.  And lim
𝑥𝑥→0

𝑥𝑥 = 0.  Therefore lim
𝑥𝑥→0

𝑥𝑥 sin�1
𝑥𝑥
� = 0 by the Squeeze Theorem. 

  



Exercises: 

Find the following limits (if they exist): 

1) lim
𝑥𝑥→1

𝑥𝑥2 + 2𝑥𝑥 − 5: 

 
2) lim

𝑥𝑥→0
1
2𝑥𝑥4

: 

 

3) lim
𝑥𝑥→−1

𝑥𝑥2−1
𝑥𝑥+1

: 

 

4) lim
𝑥𝑥→2

𝑥𝑥2−5𝑥𝑥+6
𝑥𝑥−2

: 

 

5) lim
𝑥𝑥→−2

2𝑥𝑥2+3𝑥𝑥−2
𝑥𝑥+2

: 

 

6) lim
𝑥𝑥→3

3𝑥𝑥2−10𝑥𝑥+3
𝑥𝑥−3

: 

 
 

7) lim
𝑥𝑥→1

𝑥𝑥2−1
𝑥𝑥4−1

: 

 

8) lim
𝑥𝑥→1

𝑥𝑥3−1
𝑥𝑥−1

: 

 

9) lim
𝑥𝑥→1

𝑥𝑥3−2𝑥𝑥2+𝑥𝑥
𝑥𝑥−1

: 

 

10) lim
𝑥𝑥→0

𝑥𝑥4+5𝑥𝑥2−2𝑥𝑥
𝑥𝑥

: 

 

11) lim
𝑥𝑥→0+

√𝑥𝑥+5−√5
𝑥𝑥

: 

 
 

12) lim
𝑥𝑥→9

√𝑥𝑥−3
9−𝑥𝑥

: 

 

13) lim
𝑡𝑡→0−

3−√9−𝑡𝑡
𝑡𝑡

: 

 

14) lim
ℎ→0

(3+ℎ)2−9
ℎ

:  

 

15) lim
𝑡𝑡→0

(𝑥𝑥+𝑡𝑡)2−𝑥𝑥2

𝑡𝑡
:  

 
16) lim

𝑡𝑡→0
1
𝑡𝑡
− 1

𝑡𝑡3+𝑡𝑡
: 



 
17) Use the Squeeze Theorem to find the following limits: 

 
a) Let 𝑥𝑥2 + 1 ≤ 𝑓𝑓(𝑥𝑥) ≤ 𝑒𝑒𝑥𝑥  for 𝑥𝑥 ≥ 0  Find lim

𝑥𝑥→0
𝑓𝑓(𝑥𝑥): 

 

b) Find lim
𝑥𝑥→0

𝑥𝑥2 cos �1
𝑥𝑥
� : 

 

  



CHAPTER 1 
SECTION 3 

 
PRECISE DEFINITION OF A LIMIT 

 
Let us discuss what a “precise” definition of a limit is, and why we would need such a thing.  We already 
have the definition: lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝐿𝐿  as our intuitive definition.  So what is wrong with this definition?  It 

has seemed to have served us well enough thus far.  The problem is in the vague concepts of 𝑥𝑥 
“approaching” 𝑎𝑎, and being “arbitrarily” close to 𝐿𝐿.  What do those terms actually mean?  We need 
something more precise.  E.g. exactly how close to 𝑎𝑎 do we need to be, in order to be a specified 
distance from 𝐿𝐿? 
 
Let’s consider the lim (2

𝑥𝑥→1
𝑥𝑥 + 1) = 3:   

 
Previously, we would say that as 𝑥𝑥 approaches 1 from either side, we get arbitrarily close to 3. So the 
limit is 3. 
 
But how precise is this really? What if we, say want to be within .2 of 3 on either side?  How close to 1 
does 𝑥𝑥 actually need to be? 
 
We will discover with our precise definition that it needs to be within .1 of 𝑥𝑥 =1. 
 

 
 
We will prove this using the formal definition (forthcoming), but the above graph gives us a graphical 
interpretation, which we can visually confirm. (Proof by picture!) 
 
Let us now take a look at a slightly more abstract graph:  



 

We observe the same kind of situation as the example we just discussed, except this time there are no 
values.  We see that the distance away from 𝐿𝐿 is now 𝜖𝜖, and the distance away from 
 𝑥𝑥 = 𝑎𝑎 is 𝛿𝛿.  We also observe from this graph (which is non-linear), that in order to get as close as a 
distance 𝜖𝜖 from 𝐿𝐿, we must take the smaller distance for 𝛿𝛿, or both sides of 𝐿𝐿 will not be within 𝜖𝜖. 
 
We are now ready to write down our formal definition: 
 
PRECISE DEFINITION OF A LIMIT:  Let 𝑓𝑓 be a function defined on an open interval containing 𝑎𝑎, except 
possibly at 𝑎𝑎 itself.  Then lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝐿𝐿  means if for every number 𝜖𝜖 > 0, there exists a number 

 𝛿𝛿 > 0, such that if 0 < |𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿, then |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| < 𝜖𝜖. 
 
Let’s talk about what this means.  It means that if the limit exists and is 𝐿𝐿, then there exists some value 𝛿𝛿 
(in the 𝑥𝑥-direction), that allows us to be as close to 𝐿𝐿 as we need to be, i.e. within an 𝜖𝜖 away.  We note 
that |𝑥𝑥 − 𝑎𝑎| is the distance between 𝑥𝑥 and 𝑎𝑎, and |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| is the distance between 𝑓𝑓(𝑥𝑥) and 𝐿𝐿.  (Note:  
I am going to point out the obvious, because students get confused:  most notably that |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| is in 
the y-direction). 
 
We will be doing general proofs using this definition.  Before doing that, let us return to our previous 
example:  lim (2

𝑥𝑥→1
𝑥𝑥 + 1) = 3:   

 
The first thing you may notice, is that we already need to have calculated the limit (using techniques 
from section 1.1) before we can use any of these new techniques.  We want to show that in order to be 
within a .2 distance from 3, we must be within a .1 distance from 𝑥𝑥 = 1.  We will use our new definition. 
 
We first start with 0 < |𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿.  This is the “if”, which means it is the given.  We always assume this 
part is true before proceeding further.  In our case, we have 0 < |𝑥𝑥 − 1| < 𝛿𝛿.  We will next look at the 
fact that we want |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| < .2.  Let us manipulate |𝑓𝑓(𝑥𝑥) − 𝐿𝐿|.  We have 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 + 1.  We have 
𝐿𝐿 = 3.  So |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| < .2 → |(2𝑥𝑥 + 1) − 3| < .2. This implies |2𝑥𝑥 − 2| < .2 → 2|𝑥𝑥 − 1| < .2.  Since 
0 < |𝑥𝑥 − 1| < 𝛿𝛿, then it is easy to see that 𝛿𝛿 must equal .1 
 
Let us now use this definition to find a general case for our example.  We will find a 𝛿𝛿 in terms of 𝜖𝜖, that 
will work for any 𝜖𝜖 > 0.   



 
We do this in two parts:  First we do what we call preliminary work, in order to find our 𝛿𝛿 in terms of 𝜖𝜖. 
After finding our 𝛿𝛿, we will construct a formal proof.   
 
 
Let 𝑓𝑓 be a function defined on an open interval containing 𝑎𝑎, except possibly at 𝑎𝑎 itself.  Then 
lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) = 𝐿𝐿  means if for every number 𝜖𝜖 > 0, there exists a number 𝛿𝛿 > 0, such that if  

0 < |𝑥𝑥 − 𝑎𝑎| < 𝛿𝛿, then |𝑓𝑓(𝑥𝑥) − 𝐿𝐿| < 𝜖𝜖. 
 
Let us rewrite what we want to prove for our particular example.  :  We want to prove that 
lim
𝑥𝑥→1

|(2𝑥𝑥 + 1) − 3| < 𝜖𝜖 means if for every number 𝜖𝜖 > 0, there exists a number 

 𝛿𝛿 > 0, such that if 0 < |𝑥𝑥 − 1| < 𝛿𝛿, then |(2𝑥𝑥 + 1) − 3| < 𝜖𝜖. 
 
PRELIMINARY WORK:  We need to find a 𝛿𝛿 that will work for every 𝜖𝜖 > 0.  We start by manipulating  

|(2𝑥𝑥 + 1) − 3| = |2𝑥𝑥 − 2| = 2|𝑥𝑥 − 1|.  Next we go back to what we already know.  Recall that  

0 < |𝑥𝑥 − 1| < 𝛿𝛿 is the if (or the given).  This is the part we have to assume is true.  So if  0 < |𝑥𝑥 − 1| < 𝛿𝛿 
is true, then 0 < 2|𝑥𝑥 − 1| < 2𝛿𝛿 (by using basic algebra).  But we want 2|𝑥𝑥 − 1| < 𝜖𝜖.  We observe that if 
𝛿𝛿 < 𝜖𝜖

2
, then this will work.  We already have 0 < 2|𝑥𝑥 − 1| < 2𝛿𝛿.  So if 𝛿𝛿 = 𝜖𝜖

2
, then  

0 < 2|𝑥𝑥 − 1| < 2 �𝜖𝜖
2
� →  0 < 2|𝑥𝑥 − 1| < 𝜖𝜖.  So our choice worked. 

Next, we rewrite this as a formal proof, basically going backwards. 

 

FORMAL PROOF:  For every 𝜖𝜖 > 0, there exists a 𝛿𝛿 > 0 such that If 0 < |𝑥𝑥 − 1| < 𝛿𝛿, then 0 <
2|𝑥𝑥 − 1| < 2𝛿𝛿 →   |(2𝑥𝑥 + 1) − 3| < 2𝛿𝛿.  But we let 𝛿𝛿 = 𝜖𝜖

2
.  Therefore |(2𝑥𝑥 + 1) − 3| < 2𝜖𝜖

2
→   

|(2𝑥𝑥 + 1) − 3| < 𝜖𝜖.  Q.E.D.  

 (Q.E.D. is an abbreviation of the Latin words "Quod Erat Demonstrandum" which loosely translated 
means "that which was to be demonstrated". It is usually placed at the end of a mathematical proof to 
indicate that the proof is complete.) 

 

EXAMPLE:  Let’s try another similar one:  Prove lim (3
𝑥𝑥→2

𝑥𝑥 − 2) = 4: 

PRELIMINARY WORK:  We start by manipulating |(3𝑥𝑥 − 2) − 4| = |3𝑥𝑥 − 6| = 3|𝑥𝑥 − 2|.  Recall that 0 <
|𝑥𝑥 − 2| < 𝛿𝛿 is the if (or the given).  This is the part we have to assume is true.  So if 0 < |𝑥𝑥 − 2| < 𝛿𝛿 is 
true, then 0 < 3|𝑥𝑥 − 2| < 3𝛿𝛿.  We want 3|𝑥𝑥 − 2| < 𝜖𝜖.  We choose 𝛿𝛿 = 𝜖𝜖

3
.  We  have 0 < 3|𝑥𝑥 − 2| < 3𝛿𝛿 

→ 0 < 3|𝑥𝑥 − 2| < 3 �𝜖𝜖
3
� →  0 < 3|𝑥𝑥 − 2| < 𝜖𝜖.   

 



FORMAL PROOF: For every 𝜖𝜖 > 0, there exists a 𝛿𝛿 > 0 such that If 0 < |𝑥𝑥 − 2| < 𝛿𝛿, then 0 < 3|𝑥𝑥 − 2| <
3𝛿𝛿 → |(3𝑥𝑥 − 2) − 4| < 3𝛿𝛿.  But we let 𝛿𝛿 = 𝜖𝜖

3
.  Therefore-|(3𝑥𝑥 − 2) − 4| < 3𝜖𝜖

3
→ |(3𝑥𝑥 − 2) − 4| < 𝜖𝜖.  

Q.E.D.  

 

EXAMPLE:  Let’s do one more linear example, this time with fractions.  Prove lim
𝑥𝑥→2

(2 − 1
2
𝑥𝑥)

 
= 1:   

PRELIMINARY WORK:  We start with �(2 − 1
2
𝑥𝑥)

 
−1:� = �− 1

2
𝑥𝑥 + 1� = �1

2
𝑥𝑥 − 1� (because of the absolute 

value).  Then, it equals 1
2

|𝑥𝑥 − 2|.  Recall that 0 < |𝑥𝑥 − 2| < 𝛿𝛿 is the if (or the given).  So if 0 < |𝑥𝑥 − 2| <

𝛿𝛿 is true, then  1
2

|𝑥𝑥 − 2| < 1
2
𝛿𝛿.  We want 1

2
|𝑥𝑥 − 2| < 𝜖𝜖.  We choose 𝛿𝛿 = 2𝜖𝜖.  We  have 0 < 1

2
|𝑥𝑥 − 2| <

1
2
𝛿𝛿 → 0 < 1

2
|𝑥𝑥 − 2| < 1

2
(2𝜖𝜖) →  0 < 1

2
|𝑥𝑥 − 2| < 𝜖𝜖.   

 

FORMAL PROOF: For every 𝜖𝜖 > 0, there exists a 𝛿𝛿 > 0 such that If 0 < |𝑥𝑥 − 2| < 𝛿𝛿, then 0 < 1
2

|𝑥𝑥 − 2| <

1
2
𝛿𝛿 → ��1

2
𝑥𝑥 − 1�� < 1

2
𝛿𝛿 →  |(2− 1

2
𝑥𝑥)

 
−1|  < 1

2
𝛿𝛿:.  But we let 𝛿𝛿 = 2𝜖𝜖.  Therefore: �(2− 1

2
𝑥𝑥)

 
−1� < 2𝜖𝜖

3
→

�(2 − 1
2
𝑥𝑥)

 
−1� < 𝜖𝜖.  Q.E.D.  

 

EXAMPLE:  Next we will try something a little harder.  We are going to try a nonlinear example.  Prove 
lim
𝑥𝑥→1

𝑥𝑥2 = 1.   

PRELIMINARY WORK:  We have |𝑥𝑥2 − 1| = |𝑥𝑥 + 1||𝑥𝑥 − 1|.  We know 0 < |𝑥𝑥 − 1| < 𝛿𝛿.  Then 
|𝑥𝑥 + 1||𝑥𝑥 − 1| < |𝑥𝑥 + 1|𝛿𝛿.  We need to find a positive constant 𝐶𝐶, such that  |𝑥𝑥 + 1| < 𝐶𝐶. Then 
|𝑥𝑥 + 1||𝑥𝑥 − 1| < 𝐶𝐶𝐶𝐶.  Let 𝛿𝛿 = 𝜖𝜖

𝐶𝐶
.  We need to find 𝐶𝐶.  Recall, since we are proving a limit, it means that we 

are close to 𝑥𝑥 = 1.  Therefore, let us assume we are within one value away from 𝑥𝑥 = 1.  Therefore 
|𝑥𝑥 − 1| < 1.  So 0 < 𝑥𝑥 < 2 →   1 < 𝑥𝑥 + 1 < 3.  And, |𝑥𝑥 + 1| < 3.  So we can now choose 𝐶𝐶 to be 3.  So 
|𝑥𝑥 − 1| < 𝜖𝜖

3
.  But we also had the previous inequality |𝑥𝑥 − 1| < 1.  Recall that  𝛿𝛿 must be the smallest 

value to ensure that we will be within an 𝜖𝜖 distance away from our limit 𝐿𝐿.  Therefore 𝛿𝛿 must be the 
minimum of 𝜖𝜖

3
 and 1.   

FORMAL PROOF:  For every 𝜖𝜖 > 0, there exists a 𝛿𝛿 > 0 such that If 0 < |𝑥𝑥 − 1| < 𝛿𝛿, then|𝑥𝑥 − 1| < 1 →
0 < 𝑥𝑥 < 2 →  1 < 𝑥𝑥 + 1 < 3 →  |𝑥𝑥 + 1| < 3.  We also have |𝑥𝑥 − 1| < 𝜖𝜖

3
 so |𝑥𝑥2 − 1| = |𝑥𝑥 + 1||𝑥𝑥 − 1| <

𝐶𝐶𝐶𝐶 → |𝑥𝑥 + 1||𝑥𝑥 − 1| < 3𝛿𝛿.  We let 𝛿𝛿 = min {1, 𝜖𝜖
3
} →  |𝑥𝑥 + 1||𝑥𝑥 − 1| < 3𝜖𝜖

3
= 𝜖𝜖,  Q.E.D. 

  



EXERCISES: 

 

1)  

 

       Find the values for 𝛿𝛿 given the values of 𝜖𝜖. 

 

Find the values of 𝛿𝛿, for the following function if  𝜖𝜖 = .1 on both sides: 

2) lim (5
𝑥𝑥→2

𝑥𝑥 − 1) = 9: 

 
3) lim (1

2
𝑥𝑥→2

𝑥𝑥 + 1) = 2: 

 

 Prove the following limits using our Precise Definition of a limit: 

4) lim (4
𝑥𝑥→1

𝑥𝑥 − 3) = 1: 

 
5) lim (6

𝑥𝑥→2
𝑥𝑥 − 6) = 6: 

 
6) lim (

𝑥𝑥→5
𝑥𝑥 − 1) = 4: 

 
7) lim (5

𝑥𝑥→3
𝑥𝑥 + 1) = 16: 

 
8) lim (1

2
𝑥𝑥→2

𝑥𝑥 + 1) = 2: 

 
9) lim (5

𝑥𝑥→1
5

𝑥𝑥 + 2) = 3: 

 
10) lim (2 − 1

3
𝑥𝑥

𝑥𝑥→3
) = 1: 

 



11) lim c
𝑥𝑥→2

= 𝑐𝑐: 

 
12) lim x

𝑥𝑥→1
= 1: 

 
 

13) lim 2x2
𝑥𝑥→1

= 2: 

 
14) lim

𝑥𝑥→2
𝑥𝑥2 = 4: 

 

  



CHAPTER 1 
SECTION 4 

 
CONTINUITY 

 
Before we define continuity, let us first discuss a general idea of what it might mean.  An idea of 
continuity can be:  If I have to pick up my pencil at any point while drawing a graph, it would not be 
continuous there.  (NOTE:  THIS IS NOT A DEFINITION OF CONTINUITY, FORMAL OR OTHERWISE).  It is 
simply a concept, not well-defined, merely to get your brain thinking about it. 
 
Let us now formally define continuity:  A function 𝑓𝑓 is continuous at a value 𝑎𝑎, if 𝐥𝐥𝐥𝐥𝐥𝐥

𝒙𝒙→𝒂𝒂
𝒇𝒇(𝒙𝒙) = 𝒇𝒇(𝒂𝒂). 

 

This definition implies 3 things: 

1) lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥) exists. 

 
2) 𝑓𝑓(𝑎𝑎) exists (the function is defined at 𝑎𝑎). 

 
3) lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) implies that they must also equal each other. 

 

If a function 𝑓𝑓 is continuous at 𝑥𝑥 = 𝑎𝑎, then one needs only state the definition.  If it is not continuous, 
one will list the condition that failed. 

 

Next, we will demonstrate graphically, 4 different cases:  One, which is continuous at 𝑥𝑥 = 0, and 3 that 
are not, each for a different reason: 

 

We quickly observe lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) = 0.  So we conclude 𝑓𝑓(𝑥𝑥) is continuous at 𝑥𝑥 = 0. 



 

Here, we observe 𝑓𝑓(𝑥𝑥) is not continuous at 𝑥𝑥 = 0.  Can you determine which condition failed?  
Hopefully you can see that lim

𝑥𝑥→0
𝑓𝑓(𝑥𝑥) does not exist.    lim

𝑥𝑥→0−
𝑓𝑓(𝑥𝑥) = 2, and lim

𝑥𝑥→0+
𝑓𝑓(𝑥𝑥) = 0. 

 

 

In this graph, we also observe 𝑓𝑓(𝑥𝑥) is not continuous at 𝑥𝑥 = 0.  Why not?  We see that 𝑓𝑓(0) does not 
exist here, (or 𝑓𝑓 is not defined at 𝑥𝑥 = 0). 

 



This graph also is not continuous at 𝑥𝑥 = 0.  We observe lim
𝑥𝑥→0

𝑓𝑓(𝑥𝑥) = 0, so it does exist.  We also see 𝑓𝑓(0) 

exists, and it is 2.  However, these 2 values are not equal, therefore 𝑓𝑓(𝑥𝑥) is not continuous at 

 𝑥𝑥 = 0. 

 

EXAMPLE:  Let us go back to a graph from Section 1.1: 

 

Is 𝑓𝑓(𝑥𝑥) continuous at 𝑥𝑥 = 𝜋𝜋?  Why or why not? We observe that it is not.  Why?  lim
𝑥𝑥→𝜋𝜋

𝑓𝑓(𝑥𝑥)  does not 

exist.  What about at 𝑥𝑥 = 4? Yes, lim
𝑥𝑥→4

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(4) = 16.   

 

EXAMPLE:  An example of a function that is discontinuous at 𝑥𝑥 = 0: 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

:  We quickly observe that 

𝑓𝑓(0) does not exist. (We did not need a graph here). 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = �2 when 𝑥𝑥 = −1
𝑥𝑥 when 𝑥𝑥 ≠ −1  We observe that lim

𝑥𝑥→−1
𝑓𝑓(𝑥𝑥) = −1 ≠ 𝑓𝑓(−1) = 2.  Therefore 𝑓𝑓 

is not continuous at 𝑥𝑥 = −1. 

 

 



 THEOREM:  If 𝑓𝑓,𝑔𝑔 are both continuous at 𝑥𝑥 = 𝑎𝑎, and 𝑐𝑐 is a constant, then the following functions are 
also continuous at 𝑥𝑥 = 𝑎𝑎: 

1) 𝑓𝑓 ± 𝑔𝑔 
2) 𝑐𝑐𝑐𝑐 
3) 𝑓𝑓𝑓𝑓 
4) 𝑓𝑓

𝑔𝑔
 where 𝑔𝑔(𝑎𝑎) ≠ 0. 

(The proofs are left  as an exercise). 

 

THEOREM:  If 𝑔𝑔 is continuous at 𝑥𝑥 = 𝑎𝑎 and 𝑓𝑓 is continuous at 𝑔𝑔(𝑥𝑥), then 𝑓𝑓°𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑔𝑔(𝑥𝑥)) is also 
continuous at 𝑥𝑥 = 𝑎𝑎. 

THE INTERMEDIATE VALUE THEOREM:  Let 𝑓𝑓 be continuous on the closed interval [𝑎𝑎, 𝑏𝑏], and let 𝑁𝑁 be a 
number between 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑏𝑏), where 𝑓𝑓(𝑎𝑎) ≠ 𝑓𝑓(𝑏𝑏).  Then there exists a value 𝑥𝑥 = 𝑐𝑐, in (𝑎𝑎, 𝑏𝑏) Note: It 
is now the open interval), such that 𝑓𝑓(𝑐𝑐) = 𝑁𝑁. 

This theorem is extremely useful to show there is a root in some interval of a continuous function.  It 
may be difficult to find the root, but with this theorem, we can narrow it down, and use other methods. 
E.g, if 𝑎𝑎 is negative, and 𝑏𝑏 is positive, and 𝑓𝑓 is continuous, we know there is a root in between the two 
values.   

 

Notice this graph has a value between 𝑥𝑥 = 1 and 𝑥𝑥 = 3:  The value 𝑓𝑓(𝑥𝑥) = 2 is one such value as this 
graph shows.  (We note that it is more difficult to find the 𝑥𝑥-value to which it corresponds). 

 

EXAMPLE:  Show there is a root of the equation:  𝑥𝑥3 + 2𝑥𝑥2 − 7 between 1 and 2. 

Let 𝑓𝑓(𝑥𝑥) =:  𝑥𝑥3 + 2𝑥𝑥2 − 7.  𝑓𝑓 is a polynomial, which is continuous everywhere (proof left to the reader).  
Therefore 𝑓𝑓 is continuous on [1,2].  Also 𝑓𝑓(1) ≠ 𝑓𝑓(2).  Therefore, the Intermediate Value Theorem 
applies.  This means there exists a value 𝑥𝑥 = 𝑐𝑐 such that 𝑐𝑐 is in (1,2) such that 𝑓𝑓(𝑐𝑐) = 𝑁𝑁.  Since 𝑓𝑓(1) =
−4, which is negative, and 𝑓𝑓(2) = 9 which is positive, we conclude there is a value between 1 and 2 
such that 𝑓𝑓(𝑐𝑐) = 0.  Therefore, there is at least one root in the interval (0,1). 



 

A removable discontinuity is a hole in the function:  E.g. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−1
𝑥𝑥−1

 has a hole at 𝑥𝑥 = 1,  (as discussed 
in section 1.1), therefore it is a removable discontinuity.  (We note that a vertical asymptote is not a 
removable discontinuity).  

DEFINITION:  A function 𝑓𝑓 is continuous from the right at 𝑥𝑥 = 𝑎𝑎 if lim
𝑥𝑥→𝑎𝑎+

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎). 

And a function 𝑓𝑓 is continuous from the left at 𝑥𝑥 = 𝑎𝑎 if lim
𝑥𝑥→𝑎𝑎−

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎). 

EXAMPLE:   

 

𝑓𝑓(𝑥𝑥) is continuous from the right but not from the left.  



 

EXERCISES: 

 

1)  Refer to the graph below (from Exercise 1) of Section 1.1): 

 
a) Is 𝑓𝑓 continuous at 𝑥𝑥 = 1?  Why or why not? 
b) Is 𝑓𝑓 continuous at 𝑥𝑥 = 3?  Why or why not? 

 

2) Refer to the graph below (from Exercise 2) of Section 1.1): 

 

a) Is 𝑓𝑓 continuous at 𝑥𝑥 = 𝜋𝜋?  Why or why not? 
b) Is 𝑓𝑓 continuous at 𝑥𝑥 = 2?  Why or why not? 

 
3) Refer to the graph below (from Exercise 3) of Section 1.1): 



 

a) Is 𝑓𝑓 continuous at 𝑥𝑥 = −2?  Why or why not? 
b) Is 𝑓𝑓 continuous at 𝑥𝑥 = 0?  Why or why not? 

 
4) The graph below is an example from Section 1.1: 

 
a) Is 𝑓𝑓 continuous at 𝑥𝑥 = −2?  Why or why not? 
b) Is 𝑓𝑓 continuous at 𝑥𝑥 = 0?  Why or why not? 
c) Is there a left or right continuity?  If so, which and where? 
 

5)  

 

a) Is 𝑓𝑓 continuous at 𝑥𝑥 = 0?  Why or why not? 



b) Is there a removable discontinuity?  If so, where? 

 

Explain why 𝑓𝑓 is discontinuous at the given value for 𝑥𝑥 = 𝑎𝑎.  Sketch the graph. 

6) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−4

  𝑎𝑎 = 4: 
 

7) 𝑓𝑓(𝑥𝑥) = �−𝑥𝑥, 𝑥𝑥 < 1
3𝑥𝑥, 𝑥𝑥 ≥ 1   𝑎𝑎 = 1 

 

8) 𝑓𝑓(𝑥𝑥) = �𝑥𝑥 + 1, 𝑥𝑥 < −1
2𝑥𝑥 − 1, 𝑥𝑥 ≥ −1  𝑎𝑎 = −1 

 

9) 𝑓𝑓(𝑥𝑥) = � 𝑥𝑥2 , 𝑥𝑥 < 𝜋𝜋
sin𝑥𝑥 , 𝑥𝑥 ≥ 𝜋𝜋  𝑎𝑎 = 𝜋𝜋 

 

10) 𝑓𝑓(𝑥𝑥) = �
−𝑥𝑥 + 1, 𝑥𝑥 < 0

0, 𝑥𝑥 = 0
1
𝑥𝑥

, 𝑥𝑥 > 0
  𝑎𝑎 =0 

 

Use the Intermediate Value Theorem to show a root exists for the equation in the given interval: 

11)  𝑥𝑥3 − 𝑥𝑥 + 1 = 0, (−2,0):  
 

12) sin𝑥𝑥 = 𝑥𝑥,  (−𝜋𝜋,𝜋𝜋): 

 

13) 𝑥𝑥5 − 2𝑥𝑥2 = 1,  (0,2): 

 

14) 𝑒𝑒𝑥𝑥 = 1,  (-1,1): 

 

  



CHAPTER 1 
SECTION 5 

 
LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES 

 
Below are graphs from Section 1.1:  We used these to learn about infinite limits and vertical asymptotes.  
We observe from these same graphs that each one seems to have a limit at infinity that coincide with  
𝑓𝑓(𝑥𝑥) → 0.  All these, in fact have a horizontal asymptote at 𝑦𝑦 = 0, 𝑜𝑜𝑜𝑜 𝑓𝑓(𝑥𝑥) = 0, and have limits at 
infinity that are 0. 

 
 

1  

2  

3  



4  

 

DEFINITION:  LIMIT AT INFINITY: (INTUITIVE):  Let 𝑓𝑓 be a function defined on (𝑎𝑎,∞), then lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 

means that 𝑓𝑓(𝑥𝑥) can be made arbitrarily close to 𝐿𝐿 by making 𝑥𝑥 as large as is necessary. 

Also:  LIMIT AT −∞: (INTUITIVE):  Let 𝑓𝑓 be a function defined on (−∞,𝑎𝑎), then lim
𝑥𝑥→−∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 means 

that 𝑓𝑓(𝑥𝑥) can be made arbitrarily close to 𝐿𝐿 by making 𝑥𝑥 as large as is necessary in the negative 
direction. 

NOTE:  Above graphs:  2 and 4 are the limits at positive infinity where lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = 0, and graphs 1 and 3 

are the limits at negative infinity: lim
𝑥𝑥→−∞

𝑓𝑓(𝑥𝑥) = 0.  They all have horizontal asymptotes at 𝑦𝑦 = 0. 

 

DEFINITION:  The line 𝑦𝑦 = 𝐿𝐿 𝑜𝑜𝑜𝑜 𝑓𝑓(𝑥𝑥) = 𝐿𝐿 is a horizontal asymptote of the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) if 
lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 or lim
𝑥𝑥→−∞

𝑓𝑓(𝑥𝑥) = 𝐿𝐿 are true, or both are true. 

 

THEOREM:  Let 𝑟𝑟 > 0 as a rational number, then lim
𝑥𝑥→±∞

1
𝑥𝑥𝑟𝑟

= 0.   

Without a formal proof, this is intuitively obvious.  If you don’t immediately see it, try dividing the 
number one by larger and larger values, and observe the number becomes smaller and smaller.  The 
larger the denominator becomes, the smaller the number is. Since our denominator is 𝑥𝑥𝑟𝑟 , and 𝑟𝑟 > 0, 
the denominator is getting very large in absolute value at ±∞.  Also, note that if you have any finite 
number on top, this Theorem also holds.  By limit laws:  (Limit Law 2):  lim

𝑥𝑥→𝑎𝑎
𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑐𝑐 lim

𝑥𝑥→𝑎𝑎
𝑓𝑓(𝑥𝑥).  

Therefore, for any number 𝑐𝑐, lim
𝑥𝑥→±∞

𝑐𝑐
𝑥𝑥𝑟𝑟

= 𝑐𝑐 lim
𝑥𝑥→±∞

1
𝑥𝑥𝑟𝑟

= 𝑐𝑐(0) = 0.  (This Theorem will be most helpful in 

calculating limits at infinity and horizontal asymptotes). 

 

STEPS TO FIND A HORIZONTAL ASYMPTOTE:   

1) Take lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥), 𝑜𝑜𝑜𝑜  lim
𝑥𝑥→−∞

𝑓𝑓(𝑥𝑥), 𝑜𝑜𝑜𝑜 lim
𝑥𝑥→±∞

𝑓𝑓(𝑥𝑥) 



a) If you have a form of 𝑐𝑐
𝑥𝑥𝑟𝑟

 , the limit is 0.  (In fact, If you have a constant 𝑐𝑐 in the numerator 

and multiple terms of 𝑥𝑥𝑟𝑟 , in the denominator, this still holds). Example:  𝑓𝑓(𝑥𝑥) = 5
x2−5𝑥𝑥+7

.  
lim
𝑥𝑥→±∞

𝑓𝑓(𝑥𝑥) = 0. 

b) If you have a form of ∞
∞

, this is an indeterminate form.  We must get the limit out of this 

form.  The strategy is to divide every term in both the numerator and denominator by the 
highest power of x in the denominator, then simplify, and try the limit again.  Example:  

𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−5𝑥𝑥−2
3𝑥𝑥2−7

  .  We attempt to calculate lim
𝑥𝑥→∞

𝑥𝑥2−5𝑥𝑥−2
3𝑥𝑥2−7

. We quickly see this is a form of ∞
∞

.  

We now divide all terms by the highest power of x in the denominator which is 𝑥𝑥2 .  

Therefore: lim
𝑥𝑥→∞

𝑥𝑥2−5𝑥𝑥−2
3𝑥𝑥2−7

= lim
𝑥𝑥→∞

𝑥𝑥2

𝑥𝑥2
−5𝑥𝑥𝑥𝑥2−

2
𝑥𝑥2

3𝑥𝑥2

𝑥𝑥2
− 7
𝑥𝑥2

= lim
𝑥𝑥→∞

1−5𝑥𝑥−
2
𝑥𝑥2

3− 7
𝑥𝑥2

.  We see by our Theorem that all 

terms but 1 and 3 go to zero.  Therefore lim
𝑥𝑥→∞

𝑓𝑓(𝑥𝑥) = 1
3

, and the horizontal asymptote is 

 𝑦𝑦 = 1
3
. 

 

EXAMPLE:  Find both vertical and horizontal asymptotes for 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2+3𝑥𝑥+1
𝑥𝑥2−4

.  To find the vertical 

asymptote(s):  Set 𝑥𝑥2 − 4 = 0 → 𝑥𝑥 = ±2.  Since they cancel no factors in the numerator, these are the 

vertical asymptotes.  To find the horizontal asymptote, we take lim
𝑥𝑥→∞

4𝑥𝑥2+3𝑥𝑥+1
𝑥𝑥2−4

. We get a form of ∞
∞

.  We 

divide all terms by 𝑥𝑥2 .  We get lim
𝑥𝑥→∞

4𝑥𝑥2

𝑥𝑥2
+3𝑥𝑥𝑥𝑥2+

1
𝑥𝑥2

𝑥𝑥2

𝑥𝑥2
− 4
𝑥𝑥2

= lim
𝑥𝑥→∞

4+3𝑥𝑥+
1
𝑥𝑥2

1− 4
𝑥𝑥2

= 4.  So the horizontal asymptote is 𝑦𝑦 = 4. 

 

EXAMPLE:  Find the vertical and horizontal asymptotes for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3+𝑥𝑥−1
𝑥𝑥4−81

.  Setting 𝑥𝑥4 − 81 = 0 gives 

𝑥𝑥 = ±3 for our vertical asymptotes.  For our horizontal asymptote:  lim
𝑥𝑥→∞

𝑥𝑥3+𝑥𝑥−1
𝑥𝑥4−81

= lim
𝑥𝑥→∞

𝑥𝑥3

𝑥𝑥4+
𝑥𝑥
𝑥𝑥4−

1
𝑥𝑥4

𝑥𝑥4
𝑥𝑥4−

81
𝑥𝑥4

=

lim
𝑥𝑥→∞

1
𝑥𝑥+

1
𝑥𝑥3−

1
𝑥𝑥4

1−81𝑥𝑥4
.  Notice here that all the terms go to 0, except for 1 in the denominator.  So 

lim
𝑥𝑥→∞

1
𝑥𝑥+

1
𝑥𝑥3−

1
𝑥𝑥4

1−81𝑥𝑥4
= 0

1
= 0.  So our horizontal asymptote is 𝑦𝑦 = 0. 

 

EXAMPLE:  Find the vertical and horizontal asymptotes for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3+2𝑥𝑥+9
𝑥𝑥2+8𝑥𝑥

.  Setting the denominator 
equal to 0 gives us 𝑥𝑥 = 0,−8 for the vertical asymptotes.  For the horizontal asymptote: We take 

lim
𝑥𝑥→∞

𝑥𝑥3+2𝑥𝑥+9
𝑥𝑥2+8𝑥𝑥

= lim
𝑥𝑥→∞

𝑥𝑥3

𝑥𝑥2
+2𝑥𝑥𝑥𝑥2+

9
𝑥𝑥2

𝑥𝑥2

𝑥𝑥2
+8𝑥𝑥𝑥𝑥2

= lim
𝑥𝑥→∞

𝑥𝑥+2𝑥𝑥+
9
𝑥𝑥2

1+8𝑥𝑥
= lim

𝑥𝑥→∞
𝑥𝑥
1

=  ∞. Therefore, there is no horizontal asymptote.  

Also lim
𝑥𝑥→−∞

𝑥𝑥
1

= −∞.  In this particular case, there would be a slant asymptote, which we will cover later.  

These occur when the degree of the numerator is one degree greater than the degree of the 
denominator.  (You find them by performing long division). 



 

EXAMPLE:  Find the vertical and horizontal asymptotes for 𝑓𝑓(𝑥𝑥) = √𝑥𝑥2+5𝑥𝑥−3
𝑥𝑥+4

.  The vertical asymptote is 

𝑥𝑥 = −4.  Horizontal:  lim
𝑥𝑥→∞

√𝑥𝑥2+5𝑥𝑥−3
𝑥𝑥+4

. 

We still divide all terms by the highest power of 𝑥𝑥 in the denominator, which in this case is 𝑥𝑥.  :  

lim
𝑥𝑥→∞

√𝑥𝑥2+5𝑥𝑥−3
𝑥𝑥+4

= :  lim
𝑥𝑥→∞

�𝑥𝑥2+5𝑥𝑥−3
𝑥𝑥

𝑥𝑥+4
𝑥𝑥

= lim
𝑥𝑥→∞

�𝑥𝑥
2+5𝑥𝑥−3
𝑥𝑥2

�1+4𝑥𝑥�
 = lim

𝑥𝑥→∞

�𝑥𝑥
2

𝑥𝑥2
+5𝑥𝑥𝑥𝑥2−

3
𝑥𝑥2

1+4𝑥𝑥
 = lim

𝑥𝑥→∞

�1+5𝑥𝑥−
3
𝑥𝑥2

1+4𝑥𝑥
= √1

1
= 1.  Therefore the 

horizontal asymptote is 𝑦𝑦 = 1. 

 

EXAMPLE:  Find the lim
𝑥𝑥→∞

arctan 𝑥𝑥 : This happens when  lim
𝑥𝑥→𝜋𝜋

2

cos 𝑥𝑥 = 0.  Therefore lim
𝑥𝑥→∞

arctan 𝑥𝑥 = 𝜋𝜋
2

. 

 

NOTE:  No function can cross or touch a vertical asymptote, because it is undefined there.  A horizontal 
asymptote can be crossed or touched by the function, in fact, even an infinite number of times.  The 
function need only approach a value 𝑦𝑦 = 𝐿𝐿 at either ±∞ (or both). 

 

Consider the following example:  𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

sin𝑥𝑥: 

 

 

 

  



EXERCISES:   

Find the following limits (if they exist), or show they do not exist: 

1) lim
𝑥𝑥→∞

1
𝑥𝑥+6

: 

 
2) lim

𝑥𝑥→∞
𝑥𝑥+5
𝑥𝑥2+6𝑥𝑥

: 
 

3) lim
𝑥𝑥→∞

3𝑥𝑥
𝑥𝑥2+𝑥𝑥

: 

 
4) lim

𝑥𝑥→−∞
𝑥𝑥+7
𝑥𝑥−6

: 

 

5) lim
𝑥𝑥→∞

𝑥𝑥2+5𝑥𝑥−27
4𝑥𝑥2+9

: 

 

6) lim
𝑥𝑥→−∞

13𝑥𝑥3−10𝑥𝑥+11
2𝑥𝑥3+6𝑥𝑥2

: 

 

7) lim
𝑥𝑥→∞

𝑥𝑥
1
2−7

𝑥𝑥
1
4+8

: 

 

8) lim
𝑥𝑥→∞

𝑥𝑥9+7𝑥𝑥5+14𝑥𝑥2−12𝑥𝑥+4
𝑥𝑥2+3𝑥𝑥+7

: 

 

9) lim
𝑥𝑥→−∞

4𝑥𝑥4

2𝑥𝑥4+6𝑥𝑥3−7𝑥𝑥2+11
: 

 

10) lim
𝑥𝑥→∞

√𝑥𝑥2−𝑥𝑥+3
𝑥𝑥−2

: 

 

11) lim
𝑥𝑥→∞

√𝑥𝑥4+3𝑥𝑥2

9𝑥𝑥2+7𝑥𝑥−5
: 

 

12) lim
𝑥𝑥→−∞

√𝑥𝑥2+4
2𝑥𝑥−2

: 

 
13) lim

𝑥𝑥→∞
cos𝑥𝑥
𝑥𝑥−4

:  (Hint:  Use the Squeeze Theorem). 

 

14) lim
𝑥𝑥→∞

𝑒𝑒𝑥𝑥+1
𝑒𝑒𝑥𝑥−1

: 

 
15) lim

𝑥𝑥→−∞
𝑥𝑥 − 3: 

 
16) lim

𝑥𝑥→∞
√𝑥𝑥 − 100 ∶ 

 



17) lim
𝑥𝑥→∞

ln 𝑥𝑥 : 

Find both the vertical and horizontal asymptotes for the following functions: 

18) 𝑓𝑓(𝑥𝑥) = 4
2𝑥𝑥2−32

: 
 

19) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−1
𝑥𝑥2+5𝑥𝑥−6

: 
 

20) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3−5𝑥𝑥2+10
3𝑥𝑥3−9𝑥𝑥2+6𝑥𝑥

: 
 

21) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3+𝑥𝑥2−3𝑥𝑥
13𝑥𝑥+9

: 
 

22) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2−1
5𝑥𝑥2+𝑥𝑥−9

: 
 

  



CHAPTER 1 
SECTION 6 

 
DERIVATIVES 

 
Let’s go back to the ideas in Chapter 0 where we discussed rates of change.  We started out by talking 
about velocity.  This is a good place to start, because it is a nice and familiar rate of change for most of 
us.  Derivatives are rates of change.  We have already calculated average rates of change from our 
Algebra Days.  What we have not done, is calculated instantaneous rates of change.  As mentioned 
before, we need Calculus for this.  And we will need limits in order to do this. (Lightbulb Moment!)  Why 
were we doing all those limits, which may have seemed arbitrary and unnecessarily abstract?  We will 
now see this is one such reason.  Or that Derivatives are an application of limits, if you would.  Most of 
us do care about things like instantaneous velocity!  For example, let us say we are skiing down a 
mountain.  We can already calculate our average velocity down a run on a slope.  All we need to know is 
the distance of the run, and our total time during the run.  This is simply  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
.  But, what if we 

wanted to know our exact speed when we were adjacent to, let’s say, a particular building.  Perhaps we 
thought we were going especially fast right then.  We would need Calculus and limits to determine this. 
 
Let us consider the graph below: 
 

 
We see the slope of the line that connects 𝑃𝑃 to 𝑄𝑄 is the average rate of change between 𝑃𝑃 and 𝑄𝑄 of the 
curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).  The line that connects these two points is called the secant line between 𝑃𝑃 and 𝑄𝑄. 
Secant lines connect two points on a graph, and their slope represents an average rate of change. The 

slope is  familiar:  Δ𝑦𝑦
Δ𝑥𝑥

.  Let us rename it as 𝑓𝑓(𝑥𝑥2)−𝑓𝑓(𝑥𝑥1)
𝑥𝑥2−𝑥𝑥1

.  What if we wanted to know the instantaneous rate 

of change at 𝑃𝑃.  Can you see that if we move 𝑄𝑄 closer and closer to 𝑃𝑃, that we will get something closer 
and closer to an instantaneous rate of change?  How close can we get?  Well, we observe that we can’t 
move 𝑄𝑄 all the way on top of 𝑃𝑃, i.e. 𝑃𝑃 = 𝑄𝑄, or we would be dividing by 0, which we cannot do.  So how 
close can we get without them being equal?  Aha!  Another lightbulb moment!  The limit is what allows 
us to do that.  So we move 𝑄𝑄 as arbitrarily close as we can to 𝑃𝑃, with the limit.  So the instantaneous rate 

of change here will be lim
𝑥𝑥2→𝑥𝑥1

𝑓𝑓(𝑥𝑥2)−𝑓𝑓(𝑥𝑥1)
𝑥𝑥2−𝑥𝑥1

.  Let us rename this as:  lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

:  In this form 𝑥𝑥 can be any 

value, and 𝑎𝑎 is the particular value that we know.  The graph below shows us the tangent line at the 
point (1,1) of the graph 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 .  What is a tangent line?  First of all the word “tangent” means 
touching.  A tangent line is a line that touches a graph at a particular point, and shares the same slope as 
the graph at that point. 



 

 

DEFINITION:  The tangent line to the curve 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) at a point (𝑎𝑎,𝑓𝑓(𝑎𝑎)) has the slope  

𝑚𝑚 = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

, so long as the limit exists. 

 

So the derivative is an instantaneous rate of change.  It is the slope of a tangent line at a point.  A 
practical example could also be velocity.  Velocity is a rate of change, and the derivative would represent 
an instantaneous velocity at a point (or a particular time), if we knew a function for the distance. 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 at the point (2,4).  𝑚𝑚 = lim
𝑥𝑥→2

𝑥𝑥2−4
𝑥𝑥−2

= lim
𝑥𝑥→2

(𝑥𝑥+2)(𝑥𝑥−2)
𝑥𝑥−2

=  lim
𝑥𝑥→2

( 𝑥𝑥 + 2) = 4. 

Let us redo this problem as a velocity problem.  Let 𝑠𝑠(𝑡𝑡) = 𝑡𝑡2 be the distance function (or change in 
position) at (2,4) (i.e. at time equals 2 seconds, and distance equals 4 units).  Redoing the above problem 
gives us a velocity of 4, when time is 2 seconds. (This was done as a simple change of variables from 𝑥𝑥 to 
𝑡𝑡.) 

 

We can also rename our familiar points to re-derive the formula into a new form.  This should look 
familiar, as it is the difference quotient that we studied in Algebra class. 

 



Now, we observe the slope here is 𝑚𝑚 = 𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
𝑎𝑎+ℎ−𝑎𝑎

= 𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

.  If we take lim
ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

, we again 

get the slope of the tangent line at 𝑥𝑥 = 𝑎𝑎.  Why the rename?  It is sometimes easier to manipulate in 
this form; and we will need this form to find the derivative as a function, instead of at a particular point 
(which we will do shortly). 

EXAMPLE:  Let us re-visit our previous example:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 at the point (2,4).  lim
ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

=

 lim
ℎ→0

𝑓𝑓(2+ℎ)2−𝑓𝑓(2)
ℎ

= lim
ℎ→0

4+4ℎ+ℎ2−4
ℎ

= lim
ℎ→0

ℎ(4+ℎ)
ℎ

= lim
ℎ→0

4 + ℎ = 4.  Just like before.  (Note:  In the very 

last step, we took the limit) 

 

𝑚𝑚 = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

= lim
ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

 is also called the derivative of 𝑓𝑓 at 𝑎𝑎.  Or 𝑓𝑓′(𝑎𝑎).  It is the derivative 

of a function at  a particular point.  

 

The Derivative as a Function: 

Next, we want to derive the derivative (or the slope of the tangent line) for any value of 𝑥𝑥, rather than 

only at a particular point.  𝑓𝑓′(𝑎𝑎) = lim
ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

 becomes 𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 where 𝑥𝑥 can be 

any number, rather than a particular one that we know.  This derivative becomes a whole new function, 
in which we can find the slope of the tangent line (or instantaneous rate of change) at any point.  Then, 
to find the derivative at a particular point; we can substitute any value for 𝑥𝑥, in the domain of 𝑓𝑓, that we 
choose. 

EXAMPLE:  Let us revisit our example:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 .  (Only this time, not at any particular point):  𝑓𝑓′(𝑥𝑥) =

lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= 𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)2−𝑓𝑓(𝑥𝑥)
ℎ

= lim
ℎ→0

(𝑥𝑥+ℎ)2−𝑥𝑥2

ℎ
= lim

ℎ→0
𝑥𝑥2+2𝑥𝑥ℎ+ℎ2−𝑥𝑥2

ℎ
= lim

ℎ→0
2𝑥𝑥ℎ+ℎ2

ℎ
=

lim
ℎ→0

ℎ(2𝑥𝑥+ℎ)
ℎ

= lim
ℎ→0

2𝑥𝑥 + ℎ = 2𝑥𝑥. (Note:  During the last step, we actually took the limit, i.e. we 

substituted  0 in for ℎ.  Also note that after we took the limit, we no longer wrote lim
ℎ→0

𝑓𝑓(𝑥𝑥).  Before that 

step, it was required, because we hadn’t yet taken the limit.) 

We can go a bit further with this example, by evaluating it at 𝑥𝑥 = 2, and find the same answer as in the 
two previous examples.  𝑓𝑓′(2) = 2 ∙ 2 = 4, exactly as before.  But now, we can substitute any value for 
𝑥𝑥, and get the correct slope at that value. 

Let’s take this same example and find 𝑓𝑓′(1).  𝑓𝑓′(1) = 2 ∙ 1 = 2.  Now, let’s take another look at the 
graph we had: 



 

Hopefully, you can see at 𝑥𝑥 = 1, the slope is 2.  We can go even further and find the equation of the 
tangent line:  We use point-slope form.  𝑦𝑦 − 1 = 2(𝑥𝑥 − 1) → 𝑦𝑦 = 2𝑥𝑥 − 1, which we can see is the 
tangent line in our graph. 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 5.  Find 𝑓𝑓′(𝑥𝑥).  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

=

lim
ℎ→0

(𝑥𝑥+ℎ)2+5−�𝑥𝑥2+5�
ℎ

= lim
ℎ→0

𝑥𝑥2+2𝑥𝑥ℎ+ℎ2+5−𝑥𝑥2−5
ℎ

= lim
ℎ→0

2𝑥𝑥ℎ+ℎ2

ℎ
= lim

ℎ→0
ℎ(2𝑥𝑥+ℎ)

ℎ
= 2𝑥𝑥. 

 

EXAMPLE:  Let  𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 3𝑥𝑥 + 1.  Find 𝑓𝑓′(𝑥𝑥).  Lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

=

lim
ℎ→0

2(𝑥𝑥+ℎ)2−3(𝑥𝑥+ℎ)+1−�2𝑥𝑥2−3𝑥𝑥+1�
ℎ

= lim
ℎ→0

2(𝑥𝑥2+2𝑥𝑥ℎ+ℎ2)−3𝑥𝑥−3ℎ+1−2𝑥𝑥2+3𝑥𝑥−1
ℎ

=

lim
ℎ→0

2𝑥𝑥2+4𝑥𝑥ℎ+2ℎ2−3𝑥𝑥−3ℎ+1−2𝑥𝑥2+3𝑥𝑥−1
ℎ

= lim
ℎ→0

4𝑥𝑥ℎ+2ℎ2−3ℎ
ℎ

= lim
ℎ→0

ℎ(4𝑥𝑥+2ℎ−3)
ℎ

= 4𝑥𝑥 − 3.   

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 .    Find 𝑓𝑓′(𝑥𝑥).  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= lim
ℎ→0

(𝑥𝑥+ℎ)3−𝑥𝑥3

ℎ
= lim

ℎ→0
𝑥𝑥3+3𝑥𝑥2ℎ+3𝑥𝑥ℎ2+ℎ3−𝑥𝑥3

ℎ
=

lim
ℎ→0

ℎ�3𝑥𝑥2+3𝑥𝑥ℎ+ℎ3�
ℎ

= 3𝑥𝑥2 . 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

.  Find 𝑓𝑓′(𝑥𝑥).  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= lim
ℎ→0

1
𝑥𝑥+ℎ−

1
𝑥𝑥

ℎ
= lim

ℎ→0

𝑥𝑥−(𝑥𝑥+ℎ)
𝑥𝑥(𝑥𝑥+ℎ)

ℎ
= lim

ℎ→0
− ℎ

𝑥𝑥(𝑥𝑥+ℎ)
ℎ

=

lim
ℎ→0

− ℎ
𝑥𝑥(𝑥𝑥+ℎ) ∙

1
ℎ

= lim
ℎ→0

− 1
𝑥𝑥(𝑥𝑥+ℎ) = − 1

𝑥𝑥2
.   

 



EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥+2

.  Find 𝑓𝑓′(𝑥𝑥).  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= lim
ℎ→0

1
𝑥𝑥+2+ℎ−

1
𝑥𝑥+2

ℎ
= lim

ℎ→0

(𝑥𝑥+2)−(𝑥𝑥+2+ℎ)
(𝑥𝑥+2+ℎ)(𝑥𝑥+2)

ℎ
=

lim
ℎ→0

−
ℎ

(𝑥𝑥+2+ℎ)(𝑥𝑥+2)

ℎ
= lim

ℎ→0
− ℎ

(𝑥𝑥+2+ℎ)(𝑥𝑥+2) ∙
1
ℎ

= lim
ℎ→0

− 1
(𝑥𝑥+2+ℎ)(𝑥𝑥+2) = − 1

(𝑥𝑥+2)2 . 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 − 1.  Find 𝑓𝑓′(𝑥𝑥).  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

=

lim
ℎ→0

�√𝑥𝑥+ℎ−1−√𝑥𝑥−1�
ℎ

= lim
ℎ→0

�√𝑥𝑥+ℎ−1−√𝑥𝑥−1�
ℎ

∙ �√𝑥𝑥+ℎ−1+√𝑥𝑥−1��√𝑥𝑥+ℎ−1+√𝑥𝑥−1�
= lim

ℎ→0
𝑥𝑥+ℎ−1−(𝑥𝑥−1)

ℎ �√𝑥𝑥+ℎ−1+√𝑥𝑥−1�
=

lim
ℎ→0

ℎ
ℎ �√𝑥𝑥+ℎ−1+√𝑥𝑥−1�

= 1
2√𝑥𝑥−1

. 

 

DIFFERENTIABILITY:  What is differentiability?  It means where we are allowed take the derivative.  Let’s 
revisit the idea of what the derivative means.  It is a rate of change.  It is the slope of a tangent line to 
the graph.  Let’s look at a previous graph: 

 

Do you think you could get a tangent line to this graph at 𝑥𝑥 = 0?  Hopefully, you see that it would be 
impossible.  Recall, that 𝑓𝑓 is not continuous at 𝑥𝑥 = 0. 

How about this graph? 



 

 Do you think you could get a tangent line on this graph at 𝑥𝑥 = 0?  Again, you can see it wouldn’t really 
work. 

What about the graph below: 

 

 

What about a tangent line at 𝑥𝑥 = 0 for this graph?  We see that it would be a vertical line.  Since the 
derivative is the slope of the tangent line, we observe that the slope (and therefore, the derivative) 
would be undefined here.   

 



So for a function to be differentiable, it must be smooth (i.e. no sharp corners), continuous, and with 
no vertical tangents. 

 

NOTATION:  Let’s discuss some different notations for the derivative.  We already have the derivative as 

𝑓𝑓′(𝑥𝑥).  We also have 𝑓𝑓′(𝑥𝑥) = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦′ = 𝑑𝑑�𝑓𝑓(𝑥𝑥)�
𝑑𝑑𝑑𝑑

.  Notice the 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑�𝑓𝑓(𝑥𝑥)�
𝑑𝑑𝑑𝑑

 notations were invented by 
Leibnitz, whom we learned about in Chapter 0.  I believe this is the better notation, because it is more 
explicit about what we are taking the derivative of:  It is saying we are taking the derivative of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 
with respect to 𝑥𝑥. (In this text, we will use these notations interchangeably.) 

  



EXERCISES: 

Find 𝑓𝑓(𝑎𝑎) for 𝑓𝑓(𝑥𝑥) for the given value of 𝑎𝑎, by using i) lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

 and ii) lim
ℎ→0

𝑓𝑓(𝑎𝑎+ℎ)−𝑓𝑓(𝑎𝑎)
ℎ

 

1)  𝑓𝑓(𝑥𝑥) = −𝑥𝑥2 , 𝑥𝑥 = 3: 
 

2) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 3, 𝑥𝑥 = 1: 
 

3) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 , 𝑥𝑥 = 2: 
 

4) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥−1

, 𝑥𝑥 = 4: 
 

5) Find the equation of the tangent line for the problems in number 1): 
 

Find the derivatives for the following functions:  (i.e. find 𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

. ) 

 
6) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥2: 

 
7) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 3: 

 
8) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3: 

 
9) 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥−1
: 

 
10) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 : 

 
11) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 2: 

 
12) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 𝑥𝑥 + 3: 

 
13) 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥2 + 3𝑥𝑥 − 7: 

 
14)  𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 2𝑥𝑥 − 1: 

 
15) 𝑓𝑓(𝑥𝑥) = 2

𝑥𝑥+3
: 

 
16) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+1

𝑥𝑥−2
: 

 
17) 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 3: 

 
18) 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥 − 2: 

 



19) 𝑓𝑓(𝑥𝑥) = 1
√𝑥𝑥−1

: 
 
 

20) Let us look at some of the derivatives in problem 2): 
a)  Find 𝑓𝑓′(−1),𝑓𝑓′(0),𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓′(1) for problems 2) a), b), and c), and then sketch the graphs of 

each, and draw a tangent line at each of the values given. 
 

b) Find the equation of the tangent line at 𝑥𝑥 = 1, for 2) d), e), and f). 
  

 

21) State where (meaning at which x-values) the following graphs are not differentiable, and why: 
 

a)  

 

b)  
 



c)  
 

d)  
 

e)  



CHAPTER 2 
SECTION 1 

 
DIFFERENTIATION 

POWER RULE AND SUM/DIFFERENCE RULES: 
 
 

In the previous chapter, we found the derivative by finding 𝑓𝑓′(𝑥𝑥) = lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

.  This is the definition.  

It has worked fine thus far, though we did see it could be a bit heavy on the computational side.  Let us 
look at some of the simplest functions:  Power functions, i.e. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑎𝑎 . (We will see that even in these 
simple functions, the definition of the derivative can get quite cumbersome). Let’s make a little table: 
 
𝑓𝑓(𝑥𝑥) 𝑓𝑓′(𝑥𝑥) 
𝑐𝑐 0 
𝑥𝑥 1 
𝑥𝑥2 2𝑥𝑥 
𝑥𝑥3 3𝑥𝑥2 
⋮ ⋮ 
𝑥𝑥100  ? 
⋮ ⋮ 
𝑥𝑥𝑛𝑛  ? 

 
Let us compute the first 4 entries of the table, and then we will calculate the derivative for  𝑓𝑓(𝑥𝑥) = 𝑥𝑥100 . 
 

We will start with 𝑓𝑓(𝑥𝑥) = 𝑐𝑐.  We can easily calculate lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 to obtain the answer.  In the 

interest of preventing tedium, we observe that 𝑓𝑓(𝑥𝑥) = 𝑐𝑐 is a horizontal line.  We already know 𝑓𝑓′(𝑥𝑥) is 
the slope of the tangent line.  Since the line is horizontal, the slope is 0 at every point.  Therefore 
𝑓𝑓′(𝑥𝑥) = 0.  We can do the same thing with 𝑓𝑓(𝑥𝑥) = 𝑥𝑥.  Since it is the line 𝑦𝑦 = 𝑥𝑥, we know the slope is 1 
everywhere, so 𝑓𝑓′(𝑥𝑥) = 1. 
 
Let us now find 𝑓𝑓′(𝑥𝑥) for  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 .  We already found it was 𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥. Also, in the previous section, 

we found for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 ,𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 .  So let’s move forward to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥100 .  lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

=

lim
ℎ→0

(𝑥𝑥+ℎ)100−𝑥𝑥100

ℎ
.  We observe that it was easy enough to write down and begin. What would we have 

to do next?  We understand we would have to expand (𝑥𝑥 + ℎ)100.  This is certainly possible, but it would 
not be fun or efficient.   
 
We hope, instead, that perhaps there’s a pattern for these power functions, so that we would not have 
to use the definition each time.  Perhaps you see that for each example, the derivative has this property: 
The exponent comes down and is multiplied by 𝑥𝑥, and the new exponent is one less than what it was.  
We guess that if 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 → 𝑓𝑓′(𝑥𝑥) = 𝑛𝑛𝑥𝑥𝑛𝑛−1.  We will leave the proof for now.  But in a subsequent 
section, we will prove it in an easier manner using derivatives of logarithms.   
(Note:  It even works for 𝑓𝑓(𝑥𝑥) = 𝑐𝑐.  We can write 𝑓𝑓(𝑥𝑥) = 𝑐𝑐 = 𝑐𝑐𝑥𝑥0 → 𝑐𝑐 ∙ 0𝑥𝑥−1 = 0.  (We will need the 
constant multiple rule, which we will prove shortly to fully see it).   



 
EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 .  Using the power rule:  if 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 → 𝑓𝑓′(𝑥𝑥) = 𝑛𝑛𝑥𝑥𝑛𝑛−1 →   𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 . 
 
EXAMPLE:  

       1)  If 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
3, then 𝑓𝑓′(𝑥𝑥) = 1

3
𝑥𝑥−

2
3 = 1

3 √𝑥𝑥23  

22) If 𝑦𝑦 = √𝑥𝑥 →   𝑦𝑦 = 𝑥𝑥
1
2, then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1

2
𝑥𝑥−

1
2 = 1

2√𝑥𝑥
 

23) 
𝑑𝑑� √𝑥𝑥34 �

𝑑𝑑𝑑𝑑
= 3

4
𝑥𝑥−

1
4 

24) If 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−
5
2, then 𝑓𝑓′(𝑥𝑥) = −5

2
𝑥𝑥−

7
2 

 

CONSTANT MULTIPLE RULE:  If 𝑐𝑐 is a constant, and 𝑓𝑓 is a differentiable function then: 

If 𝐹𝐹(𝑥𝑥) = 𝑐𝑐𝑐𝑐(𝑥𝑥), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐹𝐹′(𝑥𝑥) = 𝑐𝑐𝑓𝑓′(𝑥𝑥). 

PROOF:  How will we prove this?  We will go back to the definition of the derivative.  Where 𝑓𝑓′(𝑥𝑥) =
lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

.  Let 𝐹𝐹(𝑥𝑥) = 𝑐𝑐𝑐𝑐(𝑥𝑥).  𝐹𝐹′(𝑥𝑥) =  lim
ℎ→0

𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

= lim
ℎ→0

𝑐𝑐𝑐𝑐(𝑥𝑥+ℎ)−𝑐𝑐𝑐𝑐(𝑥𝑥)
𝑐𝑐

=

𝑐𝑐 lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

 (by limit law 2, chapter 1) = 𝑐𝑐𝑓𝑓′(𝑥𝑥). 

 

EXAMPLE: 

1) If 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 → 𝑓𝑓′(𝑥𝑥) = 3𝑑𝑑(𝑥𝑥2)
𝑑𝑑𝑑𝑑

= 3 ∙ 2𝑥𝑥 = 6𝑥𝑥. 

2) If 𝑦𝑦 = 2𝑥𝑥
1
2 → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2 ∙ 1

2
𝑥𝑥−

1
2 = 𝑥𝑥−

1
2 = 1

√𝑥𝑥
. 

3) If 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥9 → 𝑓𝑓′(𝑥𝑥) = 4 ∙ 9𝑥𝑥8 = 36𝑥𝑥8 

4) If 𝑦𝑦 = 1
3
𝑥𝑥
2
3 → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2

9
𝑥𝑥−

1
3. 

 

SUM/DIFFERENCE RULE:  If 𝑓𝑓 and 𝑔𝑔 are both differentiable functions, then if  

𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥), 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥) ± 𝑔𝑔′(𝑥𝑥). 

PROOF:  Let us prove: If  𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥), then 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥).  (The Sum Rule.)  (The 
Difference rule is left as an exercise for the student to prove on his/her own). 

 Let 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥),  𝐹𝐹′(𝑥𝑥) =

 lim
ℎ→0

𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

= lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)+𝑔𝑔(𝑥𝑥+ℎ)−�𝑓𝑓(𝑥𝑥)+𝑔𝑔(𝑥𝑥)�
ℎ

= lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)+𝑔𝑔(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)−𝑔𝑔(𝑥𝑥)
ℎ

=

lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)+𝑔𝑔(𝑥𝑥+ℎ)−𝑔𝑔(𝑥𝑥)
ℎ

= lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

+ lim
ℎ→0

𝑔𝑔(𝑥𝑥+ℎ)−𝑔𝑔(𝑥𝑥)
ℎ

 (by limit law 1, Chapter 1) 

 = 𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥). 



EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 2 → 𝑓𝑓′(𝑥𝑥) = 𝑑𝑑�𝑥𝑥3�
𝑑𝑑𝑑𝑑

+ 𝑑𝑑�𝑥𝑥2�
𝑑𝑑𝑑𝑑

+ 𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 𝑑𝑑(2)
𝑑𝑑𝑑𝑑

= 3𝑥𝑥3 + 2𝑥𝑥 + 1 + 0 =
3𝑥𝑥3 + 2𝑥𝑥 + 1. 

 

EXAMPLE:  Let’s combine it with the constant multiple rule:  Let 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 + 1
2
𝑥𝑥 + 7 → 𝑓𝑓′(𝑥𝑥) =

4𝑑𝑑�𝑥𝑥2�
𝑑𝑑𝑑𝑑

+
1
2𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑
+ 𝑑𝑑(1)

𝑑𝑑𝑑𝑑
= 4 ∙ 2x + 1

2
∙ 1 + 0 = 8𝑥𝑥 + 1

2
. 

 
 
EXAMPLE: 

1) Let 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥3 + 4𝑥𝑥2 + 1
3
𝑥𝑥 − 100 →   𝑓𝑓′(𝑥𝑥) = 2 ∙ 3𝑥𝑥2 + 4 ∙ 2𝑥𝑥 + 1

3
∙ 1− 0 = 6𝑥𝑥2 + 8𝑥𝑥 + 1

3
. 

2) Let 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥
2
3 − 5𝑥𝑥10 − √𝑥𝑥 →   𝑓𝑓′(𝑥𝑥) = 4

3
𝑥𝑥−

1
3 − 50𝑥𝑥 − 1

2
𝑥𝑥−

1
2. 

3) Let 𝑦𝑦 = 9√𝑥𝑥53 + 4
𝑥𝑥3

+ 2𝑥𝑥6 = 9𝑥𝑥
5
3 + 4𝑥𝑥−3 + 2𝑥𝑥6 →   𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 15𝑥𝑥

2
3 − 12𝑥𝑥−4 + 12𝑥𝑥5 

4) Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2+2𝑥𝑥−1
𝑥𝑥

= 3𝑥𝑥 + 2 − 𝑥𝑥−1 →   𝑓𝑓′(𝑥𝑥) = 3− 𝑥𝑥−2 = 3− 1
𝑥𝑥2

 
 
 
EXAMPLE:  Find the equation of the tangent line to the graph 𝑦𝑦 = 3𝑥𝑥2 − 9 at the point (1,6): 
Let us first find the slope at 𝑥𝑥 = 1:  We must first find the derivative:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 6𝑥𝑥.  At 𝑥𝑥 = 1: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 6.  We 

now use point-slope form:  𝑦𝑦 − 𝑦𝑦1 = 𝑚𝑚(𝑥𝑥 − 𝑥𝑥1) →   𝑦𝑦 − 6 = 6(𝑥𝑥 − 1) → 𝑦𝑦 = 6𝑥𝑥. 
 
EXAMPLE:  Find the equation of the tangent line to the graph 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 2𝑥𝑥 at 𝑥𝑥 = 2.  
 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 2 →   𝑓𝑓′(2) = 10.  In this case we also need to find 𝑓𝑓(2) = 4.  So the equation of the 
tangent line is:  𝑦𝑦 − 4 = 10(𝑥𝑥 − 2) →   𝑦𝑦 = 10𝑥𝑥 − 16. 
 
 
 
HIGHER-ORDER DERIVATIVES:  What is a higher-order derivative?  A higher order derivative is a 
derivative of a derivative.  For example, a second derivative is simply the derivative of the first 
derivative.  The third derivative is the derivative of the second derivative, etc. 
 
Let us introduce some notation: 
  

Function 𝑓𝑓(𝑥𝑥) 𝑦𝑦 
First Derivative 𝑓𝑓′(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 𝑦𝑦′ 

Second Derivative 𝑓𝑓′′(𝑥𝑥) 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

 
𝑦𝑦′′ 

Third Derivative  𝑓𝑓′′′(𝑥𝑥) 𝑑𝑑3𝑦𝑦
𝑑𝑑𝑥𝑥3

 
𝑦𝑦′′′ 

Fourth Derivative  𝑓𝑓(4)(𝑥𝑥) 𝑑𝑑4𝑦𝑦
𝑑𝑑𝑥𝑥4

 
𝑦𝑦(4) 

⋮ ⋮ ⋮ ⋮ 
Nth Derivative 𝑓𝑓(𝑛𝑛)(𝑥𝑥) 𝑑𝑑𝑛𝑛𝑦𝑦

𝑑𝑑𝑥𝑥𝑛𝑛
 𝑦𝑦(𝑛𝑛) 



 
 
EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥4 + 2𝑥𝑥2 + 9𝑥𝑥 + 12.  Find 𝑓𝑓(5)(𝑥𝑥).   
 
𝑓𝑓′(𝑥𝑥) = 12𝑥𝑥3 + 4𝑥𝑥2 + 9 
𝑓𝑓′′(𝑥𝑥) = 36𝑥𝑥2 + 8𝑥𝑥 
𝑓𝑓′′′(𝑥𝑥) = 72𝑥𝑥 + 8 
𝑓𝑓(4)(𝑥𝑥) = 72 
𝑓𝑓(5)(𝑥𝑥) = 0 
 
 
VELOCITY AND ACCELERATION:  Recall that we discussed velocity and acceleration in Chapter 0, and 
again in Chapter 1, Section 6. 
We discovered that velocity was the derivative of distance (or change in position).  Acceleration is the 
derivative of velocity, or second derivative of distance. 
 
EXAMPLE:  Let 𝑠𝑠(𝑡𝑡) = 5𝑡𝑡2 − 10𝑡𝑡 + 12.  Find the velocity and acceleration at 𝑡𝑡 = 2 seconds.  Let 𝑠𝑠(𝑡𝑡) 
represent distance in meters. 
 
𝑠𝑠′(𝑡𝑡) = 𝑣𝑣(𝑡𝑡) = 10𝑡𝑡 − 10.  At 𝑡𝑡 = 2, 𝑣𝑣(2) = 20 − 10 = 10𝑚𝑚

𝑠𝑠
. 

𝑎𝑎(𝑡𝑡) = 𝑣𝑣′(𝑡𝑡) = 𝑠𝑠′′(𝑡𝑡) = 10.  Therefore, 𝑎𝑎(2) = 10 𝑚𝑚
𝑠𝑠2

.  (Note that acceleration here is constant.  Gravity 

is also an example of constant acceleration: 9.8 𝑚𝑚
𝑠𝑠2

. ) 
 
 
  



EXERCISES: 
 
Find the following derivatives by using The Power Rule, The Constant Multiple Rule, The Sum/Difference 
Rule, or any combination thereof: 

 
1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥5: 

 

2) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
5: 

 

3) 𝑦𝑦 = 1
𝑥𝑥3

 
 

4) 𝑦𝑦 = √𝑥𝑥7 
 

5) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−
5
6 

 

6) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥
3
2 

 

7) 𝑓𝑓(𝑥𝑥) = 1
2
𝑥𝑥−

1
2 

 

8) 𝑓𝑓(𝑥𝑥) = 5√𝑥𝑥27  
 

9) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥6 + 4𝑥𝑥5 − 7𝑥𝑥3 + 6𝑥𝑥 − 12 
 

10) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥3 − 6𝑥𝑥2 + 3𝑥𝑥 − 7 
 

11) 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥
1
2 − 12𝑥𝑥5 − 1

𝑥𝑥4
+ 3

𝑥𝑥2
− 2𝑥𝑥3  

 

12) 𝑓𝑓(𝑥𝑥) = 20𝑥𝑥2 − 7

𝑥𝑥
1
3

+ 3
√𝑥𝑥43  

 

13) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 − 1)(𝑥𝑥 + 4) 
 

14) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)(2𝑥𝑥 − 9) 
 

15) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4(𝑥𝑥2 + 2𝑥𝑥 − 7) 
 



16) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 − 𝑥𝑥 − 1)(𝑥𝑥 + 6) 
 

17) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
2−2𝑥𝑥2+4𝑥𝑥+6

𝑥𝑥2
 

 

18) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥+1)(𝑥𝑥−1)
√𝑥𝑥

 
 

Find the equation of the tangent line to the curve at the given point (or value). 
 

19) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 9, (1,10) 
 

20) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 1, (2,9) 
 

21) 𝑓𝑓(𝑥𝑥) = √𝑥𝑥, 𝑥𝑥 = 4 
 

22) 𝑓𝑓(𝑥𝑥) = 1
√𝑥𝑥3

, 𝑥𝑥 = 4 
 

Find the following higher order derivatives: 
 

23) Find 𝑓𝑓(5)(𝑥𝑥) for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥6 − 2𝑥𝑥5 + 3𝑥𝑥4 + 6𝑥𝑥 − 9 
 

24) Find 𝑑𝑑
4𝑦𝑦

𝑑𝑑𝑥𝑥4
 for 𝑦𝑦 = 3𝑥𝑥5 − 20𝑥𝑥 + 1

𝑥𝑥
+ 6 

 

25) Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for 𝑦𝑦 = 𝑥𝑥

1
2 − 3

𝑥𝑥
+ 𝑥𝑥 

 

26) Find 𝑓𝑓′′(𝑥𝑥) for 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2

+ 12𝑥𝑥2 + √𝑥𝑥 
 

27) Let 𝑠𝑠(𝑡𝑡) = 2𝑡𝑡2 + 4𝑡𝑡 − 2 by the distance function where 𝑠𝑠 is in meters, and 𝑡𝑡 is in seconds. 
 

a) Find the velocity and acceleration when 𝑡𝑡 = 1 second 
 

b) Find the velocity and acceleration when 𝑡𝑡 = 3 seconds 
 

 
  



CHAPTER 2 
SECTION 2 

 
DIFFERENTIATION 

DERIVATIVES OF THE NATURAL EXPONENTIAL FUNCTION AND THE TRIGONOMETRIC FUNCTIONS OF 
SINE AND COSINE 

 
EXPONENTIAL FUNCTIONS AND THEIR DERIVATIVES: 

 
Let us recall what an exponential function is:  𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 ,𝑎𝑎 ≠ 1,𝑎𝑎 > 0. 
 
(Note:  Many of my students confuse 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 with 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑎𝑎  (a power function, not exponential).  
Students often see a base and an exponent, and think they are the same thing.  I have found it to be 
common for Calculus students to try and perform the derivative of 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 using the power rule (as 
we used in Section 1 for power functions of the form 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑎𝑎 , which does not apply here).  We note 
that the exponent is varying in an exponential function, with a fixed base.  And, the base is varying with 
a fixed exponent in the power function).   
 
𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 ,𝑎𝑎 ≠ 1,𝑎𝑎 > 0 →   𝑥𝑥 ≠ 0, or 1, (because they would be  constant functions, rather than 
exponential functions).  And let us also recall that 𝑥𝑥 < 0 would give us complex numbers, which we do 
not consider in a Calculus course. 
 
Recall the graphs: 

 

Recall when 𝑎𝑎 > 1,𝑓𝑓(𝑥𝑥) is increasing.  And when 0 < 𝑎𝑎 < 1, 𝑓𝑓 is decreasing.   
 
 
Let us now derive the derivative:  We return to the definition: 𝑓𝑓′(𝑥𝑥) = lim

ℎ→0
𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)

ℎ
=

lim
ℎ→0

𝑎𝑎𝑥𝑥+ℎ−𝑎𝑎𝑥𝑥

ℎ
= lim

ℎ→0
𝑎𝑎𝑥𝑥𝑎𝑎ℎ−𝑎𝑎𝑥𝑥

ℎ
= 𝑎𝑎𝑥𝑥 lim

ℎ→0
𝑎𝑎ℎ−1
ℎ

  (Note:  we can do that last step because there is no ℎ in 𝑎𝑎𝑥𝑥, 

so it does not involve a limit as ℎ → 0. 
 



We observe the derivative of 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 is:  𝑎𝑎𝑥𝑥 lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

, which we see is itself times lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

.  So what 

about this limit:  lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

?  We want to see if perhaps there is a number 𝑎𝑎, such that lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

= 1, so 

that the derivative of 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 is itself.   
 
Let’s try the number 2!  (Why?  Because these ideas have already been derived, and we already have an 
idea of where the number will lie).  We see that if we substitute in 2 for 𝑎𝑎, we have a form of 0

0
.  So how 

will we attempt this?  We will not find the limit explicitly, but instead, we will approximate it with a 

calculator.  We substitute in smaller and smaller values for ℎ, and we see that when 𝑎𝑎 ≈ 2, lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

≈

.7.  Okay, so that is a little too small.  Let’s try 𝑎𝑎 = 3.  Again we have a form of 0
0
, so we approximate with 

a number very close to zero for ℎ. When 𝑎𝑎 ≈ 3, lim
ℎ→0

𝑎𝑎ℎ−1
ℎ

≈ 1.1.  Aha!  So we know it would have to be a 

number between 2 and 3.  In fact, the number is precisely 𝑒𝑒 = 2.718 …  We also recognize this as the 
base for the natural exponential function 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 .  Therefore, when 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 ,𝑓𝑓′(𝑥𝑥) =
𝑒𝑒𝑥𝑥 lim

ℎ→0
𝑒𝑒ℎ−1
ℎ

= 𝑒𝑒𝑥𝑥 ∙ 1 = 𝑒𝑒𝑥𝑥 . 
 
So when 𝑓𝑓(𝒙𝒙) = 𝒆𝒆𝒙𝒙 → 𝒇𝒇′(𝒙𝒙) = 𝒆𝒆𝒙𝒙 .  𝑓𝑓 is its own derivative.  When you look at the above graph, you see 
the slope of the tangent line everywhere on 𝑓𝑓 is exactly 𝑓𝑓. 
 
THREE DEFINITIONS OF THE NUMBER 𝒆𝒆: 
 

1) 𝑒𝑒  is such that lim
ℎ→0

𝑒𝑒ℎ−1
ℎ

= 1. 
 

2) 𝑒𝑒 = lim
𝑛𝑛→∞

�1 + 1
𝑛𝑛
�
𝑛𝑛

= 2.718 … 

 

3) 𝑒𝑒 = lim
ℎ→0

(1 + ℎ)
1
ℎ = 2.718 … 

 

 
 
EXAMPLE:   

1) 𝑓𝑓(𝑥𝑥) = 2𝑒𝑒𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = 2𝑒𝑒𝑥𝑥  
2) 𝑓𝑓(𝑥𝑥) = 1

2
𝑒𝑒𝑥𝑥 + 3𝑥𝑥2 → 𝑓𝑓′(𝑥𝑥) = 1

2
𝑒𝑒𝑥𝑥 + 6𝑥𝑥 

 
 
EXAMPLE:  Let us find the equation of the tangent line for 𝑓𝑓(𝑥𝑥) = 3𝑒𝑒𝑥𝑥  at the point (0,3):  
 𝑓𝑓′(𝑥𝑥) = 3𝑒𝑒𝑥𝑥 →   𝑓𝑓′(0) = 3𝑒𝑒0 = 3.  Then 𝑦𝑦 − 3 = 3(𝑥𝑥 − 0) → 𝑦𝑦 = 3𝑥𝑥 + 3. 
 
  



DERIVATIVES OF TRIGONOMETRIC FUNCTIONS: 
 
Let us start with the familiar graphs of 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 and 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥: 
 

 

 
Let us recall what the derivative means.  It is the slope of the tangent line at every point on the graph.  
Look at the above graphs, and observe that wherever the slope of 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 is 0, that the cosine 
graph goes through the x-axis.  This gives us the idea that 𝑓𝑓(𝑥𝑥) = cos𝑥𝑥 might be the derivative of 
𝑓𝑓(𝑥𝑥) = sin𝑥𝑥. 
 
Let us prove this using the definition of the derivative again: 
 
lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= lim
ℎ→0

sin(𝑥𝑥+ℎ)−sin𝑥𝑥
ℎ

= lim
ℎ→0

sin𝑥𝑥 cos ℎ+cos𝑥𝑥 sin ℎ−sin𝑥𝑥
ℎ

= lim
ℎ→0

sin 𝑥𝑥 cosℎ−sin 𝑥𝑥
ℎ

+ lim
ℎ→0

cos 𝑥𝑥 sin ℎ
ℎ

 

(by limit law 1) = sin𝑥𝑥 lim
ℎ→0

cosℎ−1
ℎ

+ cos 𝑥𝑥 lim
ℎ→0

sinℎ 
ℎ

  (by the fact that sin𝑥𝑥 , cos 𝑥𝑥 do not have an ℎ, 

therefore they are not involved in the limit). 
 
Let’s summarize:  If 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = sin𝑥𝑥 lim

ℎ→0
cosℎ−1

ℎ
+ cos 𝑥𝑥 lim

ℎ→0
sinℎ 
ℎ

. 

 
To finish this proof, we have to calculate the two limits:  lim

ℎ→0
cosℎ−1

ℎ
, and lim

ℎ→0
sin ℎ 
ℎ

. 
 
Let’s look at lim

ℎ→0
sin ℎ 
ℎ

 first.  I will not prove this now.  Instead, I will show you the basic idea (and leave 

the proof for your own exploration.  It is a rather detailed geometric proof). 



Let us observe that lim
ℎ→0

sinℎ 
ℎ

≈ 1 by inspection. 

 

 
 
Take a look at the above triangle.   In physics we use what we call the small angle approximation for 
sin𝜃𝜃.  I.e., for very small angles 𝜃𝜃, sin𝜃𝜃 ≈ 𝜃𝜃.  Assume the above triangle has a very small angle 𝜃𝜃. 
 

sin𝜃𝜃 =
𝑂𝑂
𝐻𝐻

, tan𝜃𝜃 =
𝑂𝑂
𝐴𝐴

, 𝑂𝑂 ≈ 𝑠𝑠, 𝐻𝐻 ≈ 𝐴𝐴 →  sin𝜃𝜃 =
𝑂𝑂
𝐻𝐻
≈
𝑂𝑂
𝐴𝐴

= tan𝜃𝜃 ≈
𝑠𝑠
𝐴𝐴

=
𝐴𝐴𝐴𝐴
𝐴𝐴

= 𝜃𝜃.  
 
This implies sin𝜃𝜃 = 𝜃𝜃.  (We call this “proof by picture”:  Meaning it is not a formal proof, but does 
convey the meaning in a more visual, though not formal way).  If sin𝜃𝜃 = 𝜃𝜃,  for 𝜃𝜃 close to 0, then 
lim
ℎ→0

sin ℎ 
ℎ

≈ 1.  The formal proof would indeed give us lim
ℎ→0

sin ℎ 
ℎ

= 1. 
 
Now we have the lim

ℎ→0
𝑐𝑐𝑐𝑐𝑐𝑐ℎ−1

ℎ
 .  We will formally prove this one:  lim

ℎ→0
𝑐𝑐𝑐𝑐𝑐𝑐ℎ−1

ℎ
= lim

ℎ→0
𝑐𝑐𝑐𝑐𝑐𝑐ℎ−1

ℎ
∙ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1
𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1

=

lim
ℎ→0

cos2ℎ −1
ℎ(𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1)

= lim
ℎ→0

− sin2 ℎ
ℎ(𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1)

= − lim
ℎ→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ
(𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1)

∙ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ
ℎ

= −lim
ℎ→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ
(𝑐𝑐𝑐𝑐𝑐𝑐ℎ+1)

∙ lim
ℎ→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ
ℎ

= (−1) 0
2
∙ 1 = 0.  

Therefore, lim
ℎ→0

𝑐𝑐𝑐𝑐𝑐𝑐ℎ−1
ℎ

= 0. 
 
We now conclude that for 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 ,𝑓𝑓′(𝑥𝑥) = sin𝑥𝑥 lim

ℎ→0
cosℎ−1

ℎ
+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 lim

ℎ→0
sin ℎ 
ℎ

= 

sin𝑥𝑥 ∙ 0 + cos 𝑥𝑥 ∙ 1 = cos𝑥𝑥. 
 
Therefore the derivative of 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 = cos 𝑥𝑥. 
 
If 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 ,𝑓𝑓′(𝑥𝑥) = lim

ℎ→0
cos(𝑥𝑥+ℎ)−cos𝑥𝑥

ℎ
= − sin𝑥𝑥 (by a similar proof as the one above). 

 
(Note:  For the derivatives of the other trigonometric functions, we will need the quotient rule, which 
we will discover in the next section). 
 
SUMMARY:   
 

1) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥  
 

2) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = cos 𝑥𝑥 
 

3) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = − sin𝑥𝑥 
 

 



EXAMPLE: 
 

1) Let 𝑓𝑓(𝑥𝑥) = 2 cos 𝑥𝑥 − 1
2

sin𝑥𝑥 + 𝑥𝑥2 + 3𝑒𝑒𝑥𝑥 .  𝑓𝑓′(𝑥𝑥) = −2 sin𝑥𝑥 − 1
2

cos 𝑥𝑥 + 2𝑥𝑥 + 3𝑒𝑒𝑥𝑥: 
 

2) Let 𝑓𝑓(𝑥𝑥) = √2 sin𝑥𝑥 − 4 cos 𝑥𝑥 + 4𝑥𝑥3 .  𝑓𝑓′(𝑥𝑥) = √2 cos 𝑥𝑥 + 4 sin𝑥𝑥 + 12𝑥𝑥2 
 

3) Let 𝑓𝑓(𝑥𝑥) = 2 sin𝑥𝑥 − cos 𝑥𝑥.  Find the equation of the tangent line when 𝑥𝑥 = 𝜋𝜋.  First find 
𝑓𝑓′(𝑥𝑥) = 2 cos 𝑥𝑥 + sin𝑥𝑥 .  When 𝑥𝑥 = 𝜋𝜋,𝑓𝑓′(𝜋𝜋) = −2 + 0 = −2.  Next, 𝑓𝑓(𝜋𝜋) = 0 + 1 = 1.  Then 
we have 𝑦𝑦 − 1 = −2(𝑥𝑥 − 𝜋𝜋) = 𝑦𝑦 = −2𝑥𝑥 + 2𝜋𝜋 + 1. 
 

EXAMPLE:   
 

1) Find lim
𝑥𝑥→0

2sin 𝑥𝑥
3𝑥𝑥

= 2
3

lim
𝑥𝑥→0

sin𝑥𝑥
𝑥𝑥

= 2
3
∙ 1 = 2

3
 

 
2) Find lim

𝑥𝑥→0
sin2𝑥𝑥
4𝑥𝑥

= 1
2

lim
𝑥𝑥→0

sin 2𝑥𝑥
2𝑥𝑥

.  Let 𝑢𝑢 = 2𝑥𝑥 →   1
2

lim
𝑥𝑥→0

sin2𝑥𝑥
2𝑥𝑥

= 1
2

lim𝑢𝑢
2→0

sin 𝑢𝑢
𝑢𝑢

= 1
2
∙ 1 = 1

2
 

  



EXERCISES: 
 
 Find the following derivatives: 
 

1) 𝑓𝑓(𝑥𝑥) = 12𝑒𝑒𝑥𝑥 − 4 sin𝑥𝑥 + 1

𝑥𝑥
4
3
: 

 
2) 𝑓𝑓(𝑥𝑥) = 1

√2
cos 𝑥𝑥 − 5𝑒𝑒𝑥𝑥 + 12 sin𝑥𝑥 − √𝑥𝑥4 : 

 

3) 𝑓𝑓(𝑥𝑥) = 3 sin𝑥𝑥 + 14𝑒𝑒𝑥𝑥  
 

 Find the equation of the tangent line to the curve at the given x-value: 
 

4) 𝑓𝑓(𝑥𝑥) = 2𝑒𝑒𝑥𝑥 − sin𝑥𝑥 , 𝑥𝑥 = 0: 
 

5) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 − sin𝑥𝑥 , 𝑥𝑥 = 2𝜋𝜋 
 

6) 𝑓𝑓(𝑥𝑥) = 1
2
𝑒𝑒𝑥𝑥 , 𝑥𝑥 = 2: 

 

 Find the following limits: 
 

7) lim
𝑥𝑥→0

3 sin 𝑥𝑥
8𝑥𝑥

 

 

8) lim
𝑥𝑥→0

sin 3𝑥𝑥
8𝑥𝑥

 

  



 
CHAPTER 2 
SECTION 3 

 
DIFFERENTIATION 

PRODUCT AND QUOTIENT RULES 
OTHER TRIGONOMETRIC DERIVATIVES 

PRODUCT RULE: 
 
The product rule is used for, well products!  (I.e. multiplication).  Let’s start with a function that can be 
written as a very simple product:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 ∙ 𝑥𝑥2 .  We already know how to do this derivative.  We 
simply multiply, and then take the derivative.  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 ∙ 𝑥𝑥2 = 𝑥𝑥5 →  𝑓𝑓′(𝑥𝑥) = 5𝑥𝑥4 .  Intuitively, 
because of what we already know from the sum/difference rule and the constant multiple rule, we are 
tempted to think the derivative of 𝑓𝑓𝑓𝑓 is 𝑓𝑓′𝑔𝑔′.  Let’s try that.  If 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 ∙ 𝑥𝑥2 , 𝑓𝑓′(𝑥𝑥) would be  
3𝑥𝑥2 ∙ 2𝑥𝑥 = 6𝑥𝑥3 ≠ 𝑓𝑓′(𝑥𝑥) by using this false method.  So we instantly see it does not work. (To disprove 
any theorem, we need only provide one counterexample).  In fact 𝑑𝑑(𝑓𝑓𝑓𝑓)

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑔𝑔′ + 𝑓𝑓′𝑔𝑔. 

 
Let’s try our example again using the product rule:   𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 ∙ 𝑥𝑥2 →  𝑓𝑓′(𝑥𝑥) = 𝑥𝑥3 ∙ 2𝑥𝑥 + 3𝑥𝑥2 ∙ 𝑥𝑥2 =
5𝑥𝑥4 .  So we see it works in this one example. 
 
PROOF:  Let 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) →  𝐹𝐹′(𝑥𝑥) = lim

ℎ→0
𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)

ℎ
= lim

ℎ→0
𝑓𝑓(𝑥𝑥+ℎ)𝑔𝑔(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)

ℎ
=

(Warning: Trick!) = lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)𝑔𝑔(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥)+𝒇𝒇(𝒙𝒙+𝒉𝒉)𝒈𝒈(𝒙𝒙)−𝒇𝒇(𝒙𝒙+𝒉𝒉)𝒈𝒈(𝒙𝒙)
ℎ

=

lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)[𝑔𝑔(𝑥𝑥+ℎ)−𝑔𝑔(𝑥𝑥)]
ℎ

+ lim
ℎ→0

𝑔𝑔(𝑥𝑥)[𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)]
ℎ

= lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) ∙ lim
ℎ→0

𝑔𝑔(𝑥𝑥+ℎ)−𝑔𝑔(𝑥𝑥)
ℎ

+

𝑔𝑔(𝑥𝑥) lim
ℎ→0

𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥)
ℎ

= 𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑓𝑓′(𝑥𝑥).  (Note:  The trick you might not intuit is in red), 

 
Summary:  If 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) →  𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥)𝑔𝑔(𝑥𝑥). 
 
Okay, you might not want to label the function’s products with 𝑓𝑓 and 𝑔𝑔, and then have to remember 
which one is which.  A simple way to remember it is: 
   
The first times the derivative of the second, plus the derivative of the first times the second.  
 
 It is much easier to see the first and the second upon a quick inspection. 
 
EXAMPLES: 
 

1) If 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 + 9𝑥𝑥)(3𝑥𝑥3 + 12𝑥𝑥2), then 𝑓𝑓′(𝑥𝑥) = (𝑥𝑥2 + 9𝑥𝑥)(9𝑥𝑥2 + 24𝑥𝑥) + 
(2𝑥𝑥 + 9)(3𝑥𝑥3 + 12𝑥𝑥2).  (Note:  (𝑥𝑥2 + 9𝑥𝑥) is the first, and (3𝑥𝑥3 + 12𝑥𝑥2) is the second). 

 

2) If 𝑓𝑓(𝑥𝑥) = (3𝑥𝑥2 + 4𝑥𝑥 − 10) �𝑥𝑥
1
2 − 2𝑥𝑥−2 − 4𝑥𝑥3� → 𝑓𝑓′(𝑥𝑥) = 

(3𝑥𝑥2 + 4𝑥𝑥 − 10) � 1
2√𝑥𝑥

+ 4
𝑥𝑥3
− 12𝑥𝑥2� + (6𝑥𝑥 + 4) �𝑥𝑥

1
2 − 2𝑥𝑥−2 − 4𝑥𝑥3�.   (Note: (3𝑥𝑥2 + 4𝑥𝑥 − 10) 

is first, �𝑥𝑥
1
2 − 2𝑥𝑥−2 − 4𝑥𝑥3� is second. 



 
3) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 sin𝑥𝑥 →   𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 sin𝑥𝑥 

 
4) Let 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 cos 𝑥𝑥 →   𝑓𝑓′(𝑥𝑥) = sin𝑥𝑥 (− sin𝑥𝑥) + cos 𝑥𝑥 cos 𝑥𝑥 = cos2 𝑥𝑥 − sin2 𝑥𝑥. 

 
5) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥(3𝑥𝑥3 − sin𝑥𝑥) → 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥(9𝑥𝑥2 − cos 𝑥𝑥) + 𝑒𝑒𝑥𝑥(3𝑥𝑥3 − sin𝑥𝑥). 

 

6) Let 𝑓𝑓(𝑥𝑥) = (4𝑥𝑥3 + 3𝑥𝑥2 − 10𝑥𝑥) cos 𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = (4𝑥𝑥3 + 3𝑥𝑥2 − 10𝑥𝑥)(− sin𝑥𝑥) +
(12𝑥𝑥3 + 6𝑥𝑥 − 10) cos 𝑥𝑥 = −(4𝑥𝑥3 + 3𝑥𝑥2 − 10𝑥𝑥)(sin𝑥𝑥) + (12𝑥𝑥3 + 6𝑥𝑥 − 10) cos 𝑥𝑥. 
 

7) Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following functions: 

 

a) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 cos𝑥𝑥 →   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑒𝑒𝑥𝑥 sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 →   𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
= −𝑒𝑒𝑥𝑥 cos 𝑥𝑥 − 𝑒𝑒𝑥𝑥 sin𝑥𝑥 − 𝑒𝑒𝑥𝑥 sin𝑥𝑥 +

𝑒𝑒𝑥𝑥 cos 𝑥𝑥 = −2𝑒𝑒𝑥𝑥 sin𝑥𝑥. 
 

b) 𝑦𝑦 = (𝑥𝑥2 + 1)2 = (𝑥𝑥2 + 1)(𝑥𝑥2 + 1) →   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑥𝑥2 + 1)(2𝑥𝑥) + 2𝑥𝑥(𝑥𝑥2 + 1) = 4𝑥𝑥(𝑥𝑥2 + 1) →
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

= 4𝑥𝑥(2𝑥𝑥) + 4(𝑥𝑥2 + 1) = 8𝑥𝑥2 + 4𝑥𝑥2 + 4 = 12𝑥𝑥2 + 4. 
 

8) Find the equation of the tangent line for the following functions at the given x-value: 
 

a) 𝑦𝑦 = (3𝑥𝑥2 + 9)(2𝑥𝑥3 − 2𝑥𝑥) at 𝑥𝑥 = 1.  First we find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (3𝑥𝑥2 + 9)(6𝑥𝑥2 − 2) +

6𝑥𝑥(2𝑥𝑥3 − 2𝑥𝑥).  At 𝑥𝑥 = 1: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 12 ∙ 4 + 6 ∙ 0 = 48.  At 𝑥𝑥 = 1,𝑦𝑦 = 0.  Therefore, the 
equation of the tangent line is 𝑦𝑦 = 48(𝑥𝑥 − 1) → 𝑦𝑦 = 48𝑥𝑥 − 48. 

 
b) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 ,𝑎𝑎𝑎𝑎 𝑥𝑥 = 0.  𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 sin𝑥𝑥 − 𝑒𝑒𝑥𝑥 sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 =

2𝑒𝑒𝑥𝑥 cos 𝑥𝑥 .  𝑓𝑓′(0) = 2, 𝑓𝑓(0) = 1 →   𝑦𝑦 − 1 = 2(𝑥𝑥 − 0) → 𝑦𝑦 = 2𝑥𝑥 + 1. 
 

 
QUOTIENT RULE: 
 
This rule is used for quotients (division). 
 
If we didn’t just introduce the product rule, you might intuitively assume that if 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)

𝑔𝑔(𝑥𝑥),   

𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥).    This would again be incorrect.  Let’s use a simple example.  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥5

𝑥𝑥2
.  We can do 

this by simplifying and using the Power Rule.  𝑓𝑓(𝑥𝑥) = 𝑥𝑥5

𝑥𝑥2
= 𝑥𝑥3 → 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 .  If we tried the method 

we immediately thought of we would get 𝑓𝑓′(𝑥𝑥) = 5𝑥𝑥4

2𝑥𝑥
= 5

2
𝑥𝑥3 , which we observe is incorrect.  Therefore, 

we can conclude that if 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝑥𝑥),  𝐹𝐹

′(𝑥𝑥) ≠ 𝑓𝑓′(𝑥𝑥)
𝑔𝑔′(𝑥𝑥).   

 



In fact, the quotient rule is as follows:  If 𝐹𝐹(𝑥𝑥) = 𝑓𝑓
𝑔𝑔
→ 𝐹𝐹′(𝑥𝑥) = 𝑔𝑔𝑓𝑓′−𝑔𝑔′𝑓𝑓

𝑔𝑔2
. 

 
Again, you might not want to label your function using 𝑓𝑓 and 𝑔𝑔, and have to remember which one is 
which.  So in laymen’s terms: 
 
𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒐𝒐𝒇𝒇 𝑻𝑻𝑻𝑻𝑻𝑻− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒐𝒐𝒐𝒐 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑻𝑻𝑻𝑻𝑻𝑻

(𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩)𝟐𝟐  

 
Or, as my students have taught me:  𝑳𝑳𝑳𝑳 𝒅𝒅 𝑯𝑯𝑯𝑯 – 𝑯𝑯𝑯𝑯 𝒅𝒅 𝑳𝑳𝑳𝑳

𝑳𝑳𝑳𝑳 𝑳𝑳𝑳𝑳
. 

 
 
 

Let’s go back to our original example:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥5

𝑥𝑥2
= 𝑥𝑥3 → 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 .  Let us now apply the Quotient 

Rule to see that it works in this particular case.  Let 𝑥𝑥5 be the top, and 𝑥𝑥2 be the bottom.  Then,  𝑓𝑓′(𝑥𝑥) =
𝑥𝑥2∙5𝑥𝑥4−2𝑥𝑥∙𝑥𝑥5

(𝑥𝑥2)2 = 5𝑥𝑥6−2𝑥𝑥6

𝑥𝑥4
= 3𝑥𝑥6

𝑥𝑥4
= 3𝑥𝑥2 .  And, we get the correct answer. 

 
The proof of this one is very similar to the proof of the Product Rule, and is left as an exercise for the 
student. 
 
 
EXAMPLE: 
 

1) Let 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥+4
𝑥𝑥2−1

.  We will call 𝑥𝑥2 − 1 the bottom, and 2𝑥𝑥 + 4 the top.  Then 𝑓𝑓′(𝑥𝑥) =
�𝑥𝑥2−1�2−2𝑥𝑥(2𝑥𝑥+4)

(𝑥𝑥2−1)2 = 2𝑥𝑥2−2−4𝑥𝑥2−4𝑥𝑥
(𝑥𝑥2−1)2 = −2𝑥𝑥2−4𝑥𝑥−2

(𝑥𝑥2−1)2 . 
 

2) Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2+2𝑥𝑥−9
4𝑥𝑥2+7

.  Let 𝑥𝑥2 + 2𝑥𝑥 − 9 be the top, and 4𝑥𝑥2 + 7 be the bottom.  Then 𝑓𝑓′(𝑥𝑥) =
�4𝑥𝑥2+7�(2𝑥𝑥+2)−8𝑥𝑥�𝑥𝑥2+2𝑥𝑥−9�

(4𝑥𝑥2+7)2 = 4𝑥𝑥3+8𝑥𝑥2+14𝑥𝑥+14−8𝑥𝑥3−16𝑥𝑥2−72𝑥𝑥
(4𝑥𝑥2+7)2 = −4𝑥𝑥3−8𝑥𝑥2−64𝑥𝑥+14

(4𝑥𝑥2+7)2 . 
 

3) Let 𝑦𝑦 = 𝑥𝑥−3+√𝑥𝑥
𝑒𝑒𝑥𝑥+2𝑥𝑥

→ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
(𝑒𝑒𝑥𝑥+2𝑥𝑥)�−3𝑥𝑥−4+12𝑥𝑥

−12�−(𝑒𝑒𝑥𝑥+2)(𝑥𝑥−3+𝑥𝑥
1
2)

(𝑒𝑒𝑥𝑥+2𝑥𝑥)2    (We will leave the simplifying to the 

reader on this one). 
 
 

EXAMPLE: 
 

Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for 𝑦𝑦 = 𝑒𝑒𝑥𝑥+1

𝑥𝑥−2
.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑥𝑥−2)𝑒𝑒𝑥𝑥−(𝑒𝑒𝑥𝑥+1)
(𝑥𝑥−2)2 = 𝑥𝑥𝑒𝑒𝑥𝑥−2𝑒𝑒𝑥𝑥−𝑒𝑒𝑥𝑥−1

(𝑥𝑥−2)2 = 𝑥𝑥𝑒𝑒𝑥𝑥−3𝑒𝑒𝑥𝑥−1
𝑥𝑥2−4𝑥𝑥+4

→ 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

=
�𝑥𝑥2−4𝑥𝑥+4�(𝑥𝑥𝑒𝑒𝑥𝑥+𝑒𝑒𝑥𝑥−3𝑒𝑒𝑥𝑥)−(2𝑥𝑥−4)(𝑥𝑥𝑒𝑒𝑥𝑥−3𝑒𝑒𝑥𝑥−1)

(𝑥𝑥2−4𝑥𝑥+4)2 .  (Note:  The red indicates use of the product rule). 

 
EXAMPLE: 
 

Find the equation to the tangent line at the following point:  𝑦𝑦 = 𝑥𝑥2+1
𝑥𝑥−2

 at (1,−2). 



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑥𝑥−2)2𝑥𝑥−(𝑥𝑥2+1)
(𝑥𝑥−2)2 = 2𝑥𝑥2−4𝑥𝑥−𝑥𝑥2−1

(𝑥𝑥−2)2 = 𝑥𝑥2−4𝑥𝑥−1
(𝑥𝑥−2)2 .  At 𝑥𝑥 = 1: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −4

1
= −4.  So the equation of the 

tangent line to curve at (1,−2) is:  𝑦𝑦 + 2 = −4(𝑥𝑥 − 1) → 𝑦𝑦 = −4𝑥𝑥 + 2. 
 
 
 
OTHER TRIGONOMETRIC DERIVATIVES: 
 
Now that we have the Quotient Rule, we can easily prove the derivatives of the other Trigonometric 
Functions without having to use the definition of the derivative. 
 

1) 𝑑𝑑(tan 𝑥𝑥)
𝑑𝑑𝑑𝑑

= sec2 𝑥𝑥 
 

2) 𝑑𝑑(sec 𝑥𝑥)
𝑑𝑑𝑑𝑑

= sec 𝑥𝑥 tan𝑥𝑥 
 

3) 𝑑𝑑(csc 𝑥𝑥) 
𝑑𝑑𝑑𝑑

= − csc 𝑥𝑥 cot 𝑥𝑥 
 

4) 𝑑𝑑(cot𝑥𝑥)
𝑑𝑑𝑑𝑑

= − csc2 𝑥𝑥  
 

PROOF of number 1) 
 

𝑓𝑓(𝑥𝑥) = tan𝑥𝑥 = sin 𝑥𝑥
cos𝑥𝑥

.  Using the Quotient Rule, we get 𝑓𝑓′(𝑥𝑥) = cos 𝑥𝑥 cos𝑥𝑥−(−sin 𝑥𝑥) sin𝑥𝑥
cos2 𝑥𝑥

 = cos2 𝑥𝑥+sin2 𝑥𝑥
cos2 𝑥𝑥

=
1

cos2 𝑥𝑥  
= sec2 𝑥𝑥. 

 
 
The other 3 can easily be proven using the Quotient Rule and are left as an exercise for the student. 
 
 
SUMMARY: 
 

1)  𝒅𝒅(𝐬𝐬𝐬𝐬𝐬𝐬𝒙𝒙)
𝒅𝒅𝒅𝒅

= 𝐜𝐜𝐜𝐜𝐜𝐜𝒙𝒙 
 

2) 𝒅𝒅(𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙)
𝒅𝒅𝒅𝒅

= −𝐬𝐬𝐬𝐬𝐬𝐬𝒙𝒙  
 

3) 𝒅𝒅(𝐭𝐭𝐭𝐭𝐭𝐭 𝒙𝒙)
𝒅𝒅𝒅𝒅

= 𝐬𝐬𝐬𝐬𝐬𝐬𝟐𝟐 𝒙𝒙 
 

4) 𝒅𝒅(𝐬𝐬𝐬𝐬𝐬𝐬 𝒙𝒙)
𝒅𝒅𝒅𝒅

= 𝐬𝐬𝐬𝐬𝐬𝐬𝒙𝒙 𝐭𝐭𝐭𝐭𝐭𝐭 𝒙𝒙 
 

5) 𝒅𝒅(𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙)
𝒅𝒅𝒅𝒅

= −𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙 𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙 
 



6) 𝒅𝒅(𝐜𝐜𝐜𝐜𝐜𝐜 𝒙𝒙)
𝒅𝒅𝒅𝒅

= −𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐 𝒙𝒙  
 

 
EXAMPLE: 
 

1) If 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥−1
sin 𝑥𝑥+tan𝑥𝑥

→   𝑓𝑓′(𝑥𝑥) = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎)(−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+sec2 𝑥𝑥)(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−1)
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2  

 
2) Let 𝑦𝑦 = 𝑒𝑒𝑥𝑥 sin 𝑥𝑥

1−sec 𝑥𝑥
→ 𝑑𝑑𝑑𝑑

  𝑑𝑑𝑑𝑑
= (1−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)(𝑒𝑒𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑒𝑒𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)−(−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)(𝑒𝑒𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

(1−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2  

 

3) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 tan𝑥𝑥 + 𝑥𝑥2 cot 𝑥𝑥 →   𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 sec2 𝑥𝑥 + 𝑒𝑒𝑥𝑥 tan𝑥𝑥 + 𝑥𝑥2(− csc2 𝑥𝑥) + 2𝑥𝑥 cot 𝑥𝑥   
 

  



EXERCISES: 
 
Differentiate: 
 

1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2(2𝑥𝑥3 + 4𝑥𝑥2 + 5𝑥𝑥 − 6) 
 

2) 𝑓𝑓(𝑥𝑥) = (4𝑥𝑥2 + 9𝑥𝑥 − 1)(3𝑥𝑥4 + 6𝑥𝑥2 − 10𝑥𝑥 + 7) 
 

3) 𝑓𝑓(𝑥𝑥) = (𝑒𝑒𝑥𝑥 + 10𝑥𝑥2 − 4𝑥𝑥)(sin𝑥𝑥 − 5𝑥𝑥2) 
  

4) 𝑦𝑦 = (20𝑥𝑥2 + tan𝑥𝑥 − 1
√𝑥𝑥

)(sec 𝑥𝑥 − cos 𝑥𝑥) 

 

5) 𝑦𝑦 = (csc 𝑥𝑥 + 1
2
𝑒𝑒𝑥𝑥 + 1

𝑥𝑥
1
7
)(2 sin𝑥𝑥 + cot 𝑥𝑥 + 3𝑥𝑥4) 

 

6) 𝑦𝑦 = (3𝑥𝑥3 + 4𝑥𝑥2 − 2𝑥𝑥 + 8)(4𝑒𝑒𝑥𝑥 + 𝑥𝑥𝑥𝑥 − sin𝑥𝑥) 
 

7) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2+2
2𝑥𝑥−4

 
 

8) 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥3−12𝑥𝑥+7
𝑥𝑥2+4𝑥𝑥+9

 
 

9) 𝑦𝑦 = 𝑒𝑒𝑥𝑥−2𝑥𝑥2+𝑥𝑥−3

4𝑥𝑥2+9𝑥𝑥
 

 

10) 𝑦𝑦 =
2√𝑥𝑥−3𝑥𝑥3+

1
𝑥𝑥

𝑒𝑒𝑥𝑥+sin𝑥𝑥−𝑥𝑥
 

 

11) 𝑓𝑓(𝑥𝑥) = tan 𝑥𝑥+cos𝑥𝑥
𝑒𝑒𝑥𝑥−csc𝑥𝑥

 
 

12) 𝑓𝑓(𝑥𝑥) = 5𝑥𝑥2+4𝑒𝑒𝑥𝑥−sin𝑥𝑥
𝑥𝑥−2+cot𝑥𝑥

 
 

13) 𝑦𝑦 = 𝑒𝑒𝑥𝑥−sin 𝑥𝑥
𝑒𝑒𝑥𝑥 cos 𝑥𝑥+4𝑥𝑥4

 
 

14) 𝑓𝑓(𝑡𝑡) = 𝑡𝑡2+2𝑡𝑡−sec 𝑡𝑡
√𝑡𝑡+4sin 𝑡𝑡

 
 

15) 𝑦𝑦 = 1

𝑡𝑡2+sin 𝑡𝑡+𝑡𝑡
2
3
 



 

16) 𝑦𝑦 = 𝑥𝑥
𝑒𝑒𝑥𝑥−𝑥𝑥 sin 𝑥𝑥

 
 

17) 𝑓𝑓(𝑥𝑥) = 𝑐𝑐𝑐𝑐
𝑐𝑐 sin𝑥𝑥−𝑐𝑐𝑥𝑥4+𝑐𝑐𝑐𝑐

  where 𝑐𝑐 is a constant. 
 

18) 𝑦𝑦 =
9𝑥𝑥2+14𝑒𝑒

𝑥𝑥

√2𝑥𝑥2−4𝑥𝑥5+ 1
𝑥𝑥3

 

 

19) 𝑓𝑓(𝑥𝑥) = 12𝑥𝑥3

𝑒𝑒𝑥𝑥+20𝑥𝑥
 

 

Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 for the following functions: 

 
20) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 cos 𝑥𝑥 

 

21) 𝑦𝑦 = 𝑥𝑥2+4
4𝑥𝑥−9

 
 

22) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 cos𝑥𝑥 + 𝑥𝑥 sin𝑥𝑥 
 

23) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2

2𝑒𝑒𝑥𝑥+3𝑥𝑥
 

 

 Find the equation of the tangent line at the following points: 
 

24) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 + 2𝑥𝑥 − 3)(2𝑥𝑥 + 6), (1,0) 
 

25) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 sin𝑥𝑥 − 3 cos𝑥𝑥 , (0,−3) 
 

26) 𝑓𝑓(𝑥𝑥) = 1−2𝑥𝑥
𝑥𝑥2+2

, (2,−1
2
) 

 

Challenge Problems: 
 
Prove the quotient rule, and the derivatives for the rest of the trigonometric functions. 

 

  



CHAPTER 2 
SECTION 4 

 
DIFFERENTIATION 

CHAIN RULE 
 

What is the Chain Rule used for?  It is used for composite functions, i.e. 𝑓𝑓°𝑔𝑔 = 𝑓𝑓�𝑔𝑔(𝑥𝑥)�.  For example, 
let 𝐹𝐹(𝑥𝑥) = (𝑥𝑥2 + 3𝑥𝑥)7.  Without the Chain Rule, we can do this one.  All we have to do is expand it, i.e, 
multiply it 7 times.  That will not be fun!  Instead, we will use the Chain Rule!  We observe that if 𝑔𝑔(𝑥𝑥) =
𝑥𝑥2 + 3𝑥𝑥, then 𝑓𝑓�𝑔𝑔(𝑥𝑥)� = (𝑥𝑥2 + 3𝑥𝑥)7.   
 
The Chain Rule is as follows:  If 𝐹𝐹(𝑥𝑥) = 𝑓𝑓�𝑔𝑔(𝑥𝑥)� → 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥).  Or in Laymen’s terms: 
 
DERIVATIVE OF THE OUTSIDE TIMES DERIVATIVE OF THE INSIDE. 
 
We Note that the 𝑔𝑔(𝑥𝑥) is the inside, and the 𝑓𝑓(𝑔𝑔(𝑥𝑥)) is the outside.  Some functions are easier to see 
this way than others. 
 
Leibnitz Notation:  Let 𝑔𝑔(𝑥𝑥) = 𝑢𝑢, and 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).  Then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 
 
Let’s go back to our example:  If 𝐹𝐹(𝑥𝑥) = (𝑥𝑥2 + 3𝑥𝑥)7, and (𝑥𝑥2 + 3𝑥𝑥) is the inside, then 
 𝐹𝐹′(𝑥𝑥) = 7(𝑥𝑥2 + 3𝑥𝑥)6 ∙ (2𝑥𝑥 + 3), where 7(𝑥𝑥2 + 3𝑥𝑥)6 is the derivative of the outside, and (2𝑥𝑥 + 3) is 
the derivative of the inside. 
 
Let’s re-label everything and use Leibnitz notation:  Let 𝑢𝑢 = 𝑥𝑥2 + 3𝑥𝑥, and 𝑦𝑦 = 𝑢𝑢7 .  Then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
→

7𝑢𝑢6(2𝑥𝑥 + 3) = 7(𝑥𝑥2 + 3𝑥𝑥)6(2𝑥𝑥 + 3), since 𝑢𝑢 = 𝑥𝑥2 + 3𝑥𝑥.  So we get the same answer using both 
notations (which of course we would). 
 
 
PROOF:  We will only prove this for a particular point, i.e. at 𝑥𝑥 = 𝑎𝑎.  The general proof is left for the 
student to explore at will. 
 

To prove the Chain Rule at 𝑥𝑥 = 𝑎𝑎 , we will use lim
𝑥𝑥→𝑎𝑎

𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑎𝑎)
𝑥𝑥−𝑎𝑎

  notation.  Let 𝐹𝐹(𝑥𝑥) = 𝑓𝑓�𝑔𝑔(𝑥𝑥)�.  Then 

𝐹𝐹′(𝑥𝑥) = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓�𝑔𝑔(𝑥𝑥)�−𝑓𝑓�𝑔𝑔(𝑎𝑎)�
𝑥𝑥−𝑎𝑎

= (Warning:  Trick!) = lim
𝑥𝑥→𝑎𝑎

𝑓𝑓�𝑔𝑔(𝑥𝑥)�−𝑓𝑓�𝑔𝑔(𝑎𝑎)�
𝑥𝑥−𝑎𝑎

∙ 𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎)
𝑔𝑔(𝑥𝑥)−𝑔𝑔(𝑎𝑎) = 

lim
𝑥𝑥→𝑎𝑎

𝑓𝑓�𝑔𝑔(𝑥𝑥)� − 𝑓𝑓(𝑔𝑔(𝑎𝑎))
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

∙
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

𝑥𝑥 − 𝑎𝑎

= lim
𝑥𝑥→𝑎𝑎

𝑓𝑓�𝑔𝑔(𝑥𝑥)� − 𝑓𝑓(𝑔𝑔(𝑎𝑎))
𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)

∙ lim
𝑥𝑥→𝑎𝑎

𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎)
𝑥𝑥 − 𝑎𝑎

 (by Limit Law 3) = 𝑓𝑓′�𝑔𝑔(𝑎𝑎)�𝑔𝑔′(𝑎𝑎). 

 
(Note:  trick is in red). 
 
 



 
 
 
 
EXAMPLE: 
 

1) Let 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥3 + 9𝑥𝑥 = (2𝑥𝑥3 + 9𝑥𝑥)
1
2 →  𝑓𝑓′(𝑥𝑥) = 1

2
(2𝑥𝑥3 + 9𝑥𝑥)−

1
2(6𝑥𝑥2 + 9) = 6𝑥𝑥2+9

2√2𝑥𝑥3+9𝑥𝑥
, where 

1
2

(2𝑥𝑥3 + 9𝑥𝑥)−
1
2 is the derivative of the outside, and 6𝑥𝑥2 + 9 is the derivative of the inside. 

 
2) Let 𝑦𝑦 = (3𝑒𝑒𝑥𝑥 + sin𝑥𝑥 − 2𝑥𝑥)3 → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 3(3𝑒𝑒𝑥𝑥 + sin𝑥𝑥 − 2𝑥𝑥)2(3𝑒𝑒𝑥𝑥 + cos 𝑥𝑥 − 2) where 

3(3𝑒𝑒𝑥𝑥 + sin𝑥𝑥 − 2𝑥𝑥)2 is the derivative of the outside, and 3𝑒𝑒𝑥𝑥 + cos 𝑥𝑥 − 2 is the derivative of 
the inside. 
 

3) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒2𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = 2𝑒𝑒2𝑥𝑥   (This one can perhaps be more difficult to see.  Because of the 
terminology we have used:  (I.e., outside and inside), it may be more difficult to understand 
which is which).  The outside here would be 𝑒𝑒𝑢𝑢, and the inside would be 𝑢𝑢 = 2𝑥𝑥.  Therefore, the 
derivative of the outside is 𝑒𝑒2𝑥𝑥  and the derivative of the inside is 2.  Or:   𝑓𝑓′�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) =
𝑒𝑒2𝑥𝑥(which is 𝑓𝑓′�𝑔𝑔(𝑥𝑥)�, times 2�which is 𝑔𝑔′(𝑥𝑥)� = 2𝑒𝑒2𝑥𝑥 . 
 

4) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2−𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = (2𝑥𝑥 − 1)𝑒𝑒𝑥𝑥2−𝑥𝑥   (Note:  the exponential, 𝑒𝑒, piece never changes). 
 

5) Let 𝑦𝑦 = sin2 𝑥𝑥 = (sin𝑥𝑥)2 → 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 sin𝑥𝑥 cos 𝑥𝑥 where 2 sin𝑥𝑥 is the derivative of the outside, 
and cos 𝑥𝑥 is the derivative of the inside. 
 

6) So far, the above examples are pretty straightforward.  This is due to the fact that we only had 
to apply the Chain Rule by itself (In addition to the more basic rules).  We will now combine the 
Chain Rule with the Product and Quotient Rules. 
 

Let 𝑓𝑓(𝑥𝑥) = (3𝑥𝑥2 + 6𝑥𝑥)4(𝑥𝑥3 + 3𝑥𝑥2)5. Can you pick out which rules you will have to use?  
Hopefully you can see it is the Product Rule and the Chain Rule.  Observe that we have 
multiplication, and we have composite functions.  The next question will be which rule do I start 
with?  We will start with the Product Rule, because we have a product of two functions, each 
with a different power.  If they were combined in a way to be raised to the same power, we 
would have started with the Chain Rule. 
 
𝑓𝑓′(𝑥𝑥) = (3𝑥𝑥2 + 6𝑥𝑥)4 ∙ 5(𝑥𝑥3 + 3𝑥𝑥2)4(3𝑥𝑥2 + 6𝑥𝑥) + 4(3𝑥𝑥2 + 6𝑥𝑥)3(6𝑥𝑥 + 6)(𝑥𝑥3 + 3𝑥𝑥2)5 . 
            1st                              d(2nd)                        d(1st)             2nd 

          Chain Rule                                   Chain Rule 
 



7) Next let’s try a Quotient Rule/Chain Rule combo:  Let 𝑓𝑓(𝑥𝑥) = �3𝑥𝑥
2−9

𝑥𝑥3+6𝑥𝑥
�
3

.  We will start by using 
the Chain Rule first.  (Notice that it is all to a single power).   

 

𝑓𝑓′(𝑥𝑥) = 3�
3𝑥𝑥2 − 9
𝑥𝑥3 + 6𝑥𝑥

�
2

�
(𝑥𝑥3 + 6𝑥𝑥)(6𝑥𝑥 − 9) − (3𝑥𝑥2 + 6)(3𝑥𝑥2 − 9)

(𝑥𝑥3 + 6𝑥𝑥)2 � 

                     d(outside)                        d(inside) 
                                                            Quotient Rule 
 

8) Let 𝑦𝑦 = (3𝑥𝑥3 + 6𝑥𝑥2 + 7𝑥𝑥)2(5𝑥𝑥2 + 9𝑥𝑥 − 1)3 → 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (3𝑥𝑥3 + 6𝑥𝑥2 + 7𝑥𝑥)2 ∙ 3(5𝑥𝑥2 + 9𝑥𝑥 − 1)2(10𝑥𝑥 + 9) + 

2(3𝑥𝑥3 + 6𝑥𝑥2 + 7𝑥𝑥)2(9𝑥𝑥2 + 12𝑥𝑥 + 7) ∙ (5𝑥𝑥2 + 9𝑥𝑥 − 1)3. 
 

9) Let 𝑦𝑦 = �𝑥𝑥2+2𝑥𝑥
2𝑥𝑥−9

= �𝑥𝑥
2+2𝑥𝑥
2𝑥𝑥−9

�
1
2 → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1

2
�𝑥𝑥

2+2𝑥𝑥
2𝑥𝑥−9

�
−12 �(2𝑥𝑥−9(2𝑥𝑥+2)−2(𝑥𝑥2+2𝑥𝑥)

(2𝑥𝑥−9)2
� 

       d(outside)            d(inside) 
                                    Quotient Rule 
 

10) Let 𝑓𝑓(𝑥𝑥) = �𝑥𝑥2−3𝑥𝑥�3

(𝑒𝑒𝑥𝑥−5𝑥𝑥2)7.  For this one, we need to start with the Quotient Rule first, since we have 

two functions to different powers:  𝑓𝑓′(𝑥𝑥) = �𝑒𝑒𝑥𝑥−5𝑥𝑥2�7∙3�𝑥𝑥2−3𝑥𝑥�2(2𝑥𝑥−3)−7�𝑒𝑒𝑥𝑥−5𝑥𝑥2�
6(𝑒𝑒𝑥𝑥−10𝑥𝑥)�𝑥𝑥2−3𝑥𝑥�3

(𝑒𝑒𝑥𝑥−5𝑥𝑥2)14  

 
11) Let 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 sin2 𝑥𝑥 → 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 ∙ 2 sin𝑥𝑥 cos𝑥𝑥 + 𝑒𝑒𝑥𝑥 sin2 𝑥𝑥 

                                                                          1st       d(2nd)          d(1st)  2nd  
                                                                                    Chain Rule  
 

12) Let 𝑓𝑓(𝑥𝑥) = (tan2 𝑥𝑥 − 𝑒𝑒2𝑥𝑥)5 → 𝑓𝑓′(𝑥𝑥) = 5(tan2 𝑥𝑥 − 𝑒𝑒2𝑥𝑥)4 (2 tan𝑥𝑥 𝑠𝑠𝑠𝑠𝑐𝑐2𝑥𝑥 − 2𝑒𝑒2𝑥𝑥) 
                                                                            d(outside)                   d(inside) 
                                                                                                          Chain Rule          Chain Rule 
 

13) Let 𝑦𝑦 = 2
4𝑥𝑥2−9

= 2(4𝑥𝑥2 − 9)−1 → 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2(4𝑥𝑥2 − 9)−28𝑥𝑥 = − 16𝑥𝑥
(4𝑥𝑥2−9)2 

 

14) Let 𝑦𝑦 = 1
√sin𝑥𝑥+4𝑥𝑥4

= (sin𝑥𝑥 + 4𝑥𝑥4)−
1
2  → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −1

2
(sin𝑥𝑥 + 4𝑥𝑥4)−

3
2(cos 𝑥𝑥 + 16𝑥𝑥3) =

− cos 𝑥𝑥+16𝑥𝑥3

2�(sin𝑥𝑥+4𝑥𝑥4)3
 

 
15) Let 𝑓𝑓(𝑥𝑥) = cos (𝑒𝑒𝑥𝑥).  Let us notice that this is a Chain Rule problem, not a Product Rule problem.  

You have to take the cosine of something (another common mistake).  𝑓𝑓′(𝑥𝑥) = − sin(𝑒𝑒𝑥𝑥) ∙ 𝑒𝑒𝑥𝑥 . 
 

16) Let 𝑓𝑓(𝑡𝑡) = cos(cos(𝑒𝑒𝑥𝑥)).  This one is a double Chain Rule Problem. 
 
𝑓𝑓′(𝑡𝑡) = −sin (cos(𝑒𝑒𝑥𝑥)) ∙ (− sin(𝑒𝑒𝑥𝑥)) ∙ 𝑒𝑒𝑥𝑥  
 

17) Let 𝑦𝑦 = 𝑒𝑒sin�𝑥𝑥2� → 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒sin�𝑥𝑥2� ∙ cos (𝑥𝑥2) ∙ 2𝑥𝑥  (Another multiple Chain Rule Problem). 



 

 
 

18) Find 𝑓𝑓′′(𝑥𝑥)  for  𝑓𝑓(𝑥𝑥) = (2𝑥𝑥3 + 10𝑥𝑥2)3 
 

𝑓𝑓′(𝑥𝑥) = 3(2𝑥𝑥3 + 10𝑥𝑥2)2(6𝑥𝑥2 + 20𝑥𝑥) 
 
𝑓𝑓′′(𝑥𝑥) = 3(2𝑥𝑥3 + 10𝑥𝑥2)2(12𝑥𝑥 + 20) + 6(2𝑥𝑥3 + 10𝑥𝑥2)(6𝑥𝑥2 + 20𝑥𝑥)(6𝑥𝑥2 + 20𝑥𝑥) 
                           1st                     d(2nd )                                 d(1st)                          2nd  
                                                                                             Chain Rule 
(Note:  You get the (6𝑥𝑥2 + 20𝑥𝑥) twice.  One is the derivative of the inside, and the other is the 
second function.  This frequently happens with 2nd derivatives of this type). 
 
 

19) Find the equation of the tangent line to the graph 𝑦𝑦 = (3𝑥𝑥2 − 9)2 at the point (2,9). 
 

𝑓𝑓′(𝑥𝑥) = 2(3𝑥𝑥2 − 9)6𝑥𝑥 → 𝑓𝑓′(2) = 72 →  𝑦𝑦 − 9 = 72(𝑥𝑥 − 2) → 𝑦𝑦 = 72𝑥𝑥 − 135. 
 
 

 
20) Let 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 where 𝑎𝑎 is any constant > 0, and ≠ 1.  We can write 𝑎𝑎 = 𝑒𝑒ln 𝑎𝑎 .  Then 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 =

𝑒𝑒(ln𝑎𝑎)𝑥𝑥 = 𝑒𝑒𝑥𝑥 ln 𝑎𝑎  or 𝑒𝑒(ln𝑎𝑎)𝑥𝑥 →   𝑓𝑓′(𝑥𝑥) = 𝑒𝑒(ln𝑎𝑎)𝑥𝑥 ∙ 𝑑𝑑(𝑥𝑥 ln 𝑎𝑎)
𝑑𝑑𝑑𝑑

= 𝑎𝑎𝑥𝑥 ln𝑎𝑎,  since 𝑎𝑎 = 𝑒𝑒ln𝑎𝑎 .  (Also note that 
𝑑𝑑(𝑥𝑥 ln𝑎𝑎)

𝑑𝑑𝑑𝑑
= ln 𝑎𝑎, because ln 𝑎𝑎 is a constant, which many students forget). 

 
 

Let 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2−9 → 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2−9 ∙ ln 3 ∙ (2𝑥𝑥) = 2 ln 3 ∙ 𝑥𝑥 ∙ 3𝑥𝑥2−9 
                                                                    d(outside)   d(inside) 
  



EXERCISES: 
 
Differentiate: 
 

1) 𝑓𝑓(𝑥𝑥) = (5𝑥𝑥3 − 7𝑥𝑥2 + 9)7 
 

2) 𝑓𝑓(𝑥𝑥) = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑥𝑥2 + 4𝑒𝑒𝑥𝑥)3 
 

3) 𝑦𝑦 = �1
2
𝑒𝑒𝑥𝑥 − 12𝑥𝑥2 − 9𝑥𝑥 + 2�

2
 

 

4) 𝑦𝑦 = √𝑥𝑥−2 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
 

5) 𝑦𝑦 = 1
cos2 𝑥𝑥−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

 
 

6) 𝑦𝑦 = 2
(2𝑥𝑥2−𝑒𝑒3𝑥𝑥+𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)3 

 

7) 𝑦𝑦 = 𝑒𝑒5𝑥𝑥7−2𝑥𝑥3+4 + tan2 𝑥𝑥 − 4𝑥𝑥5 
 

8) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2(𝑥𝑥3 + 7𝑥𝑥 − 2) 
 

9) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 − 9)3(𝑥𝑥3 + 2𝑥𝑥)5 
 

10) 𝑦𝑦 = (𝑒𝑒𝑥𝑥 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)9(4𝑥𝑥7 − 2)4 
 

11) 𝑓𝑓(𝑥𝑥) = (7𝑥𝑥2 + 2𝑥𝑥 + 8)2(6𝑥𝑥3 + 2𝑥𝑥2 + 𝑥𝑥)4 
 

12) 𝑓𝑓(𝑥𝑥) = √14𝑥𝑥2 − 2𝑥𝑥 ∙ (4𝑥𝑥8 − 10𝑥𝑥 + 3)9 
 

13) 𝑦𝑦 = (sin𝑥𝑥 + 𝜋𝜋𝜋𝜋 − 𝑥𝑥2)−3(3𝑥𝑥2 + 7𝑥𝑥)
3
2 

 

14) 𝑦𝑦 = �12𝑥𝑥
2−5𝑥𝑥

𝑥𝑥−2
�
5

 
 

15) 𝑓𝑓(𝑥𝑥) = �𝑒𝑒
1
2𝑥𝑥 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑥𝑥

5
3 

 



16) 𝑦𝑦 = �𝑒𝑒
4𝑥𝑥−𝑥𝑥−2+7
𝑥𝑥2+6𝑥𝑥

�
−2

 
 

17) 𝑓𝑓(𝑥𝑥) = �5𝑥𝑥4−3𝑥𝑥+2
𝑥𝑥2−𝑥𝑥

 

 

18) 𝑓𝑓(𝑥𝑥) = �𝑠𝑠𝑠𝑠𝑛𝑛
2𝑥𝑥 −𝑒𝑒2𝑥𝑥−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
4𝑥𝑥3−12

�
2
3 

 

19) 𝑦𝑦 = (4𝑥𝑥7+3𝑥𝑥+5)7

(𝑒𝑒8𝑥𝑥−4𝑥𝑥+6)3 
 

 

20) 𝑦𝑦 = �12𝑥𝑥2−7�
1
2

(14𝑥𝑥3−20𝑥𝑥2+6𝑥𝑥)2 

 

21) 𝑦𝑦 = (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+cos2 𝑥𝑥−𝑥𝑥)2

(5𝑥𝑥2−5𝑒𝑒𝑥𝑥)4  

 

22) 𝑓𝑓(𝑥𝑥) = sin (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
 

23) 𝑓𝑓(𝑥𝑥) = cos (tan2 𝑥𝑥) 
 

24) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒cos2 𝑥𝑥  
 

25) 𝑓𝑓(𝑡𝑡) = cos (cos(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) 
 

26) 𝑦𝑦 = tan2(𝑒𝑒10𝑥𝑥 + sin2 𝑥𝑥) 
 

27) 𝑦𝑦 = �sin�𝑒𝑒3𝑥𝑥3 + 9𝑥𝑥��
3

 
 

28) 𝑓𝑓(𝑡𝑡) = �tan(𝑠𝑠𝑠𝑠𝑠𝑠2𝑥𝑥 − 𝑒𝑒2𝑥𝑥) 
 

29) 𝑠𝑠(𝑡𝑡) = 𝑒𝑒sin2 𝑥𝑥−cot2 𝑥𝑥 
 

30) 𝑦𝑦 = 𝑒𝑒sin2 𝑥𝑥+cos2 𝑥𝑥  
 

31) 𝑓𝑓(𝑥𝑥) = (3𝑥𝑥 − 𝑒𝑒4𝑥𝑥2) 
 



32) 𝑓𝑓(𝑥𝑥) = 24𝑥𝑥3−2𝑥𝑥 
 

 
 

Find 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
  for the following functions: 
33) 𝑦𝑦 = (4𝑥𝑥7 − 3𝑥𝑥2)5 

 
34) 𝑦𝑦 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + cos2 𝑥𝑥 − 𝑥𝑥) 2 
 

35) 𝑦𝑦 = (𝑒𝑒𝑥𝑥 − 4𝑥𝑥2)7 
 

36) 𝑦𝑦 = (𝑒𝑒3𝑥𝑥 + 7𝑥𝑥2 − 9)
1
3 

 

37) 𝑦𝑦 = √3𝑥𝑥3 − 7𝑥𝑥 
 

Find the equation of the tangent line to the graph at the given point: 
 

38) 𝑓𝑓(𝑥𝑥) = (3𝑥𝑥2 − 9)3,   (2,27) 
 

39) 𝑦𝑦 = sin2 𝑥𝑥 − 𝑒𝑒2𝑥𝑥 ,   (0,−1) 
 

40) 𝑦𝑦 = √𝑥𝑥2 − 4,   (3,5) 
 

41)  𝑓𝑓(𝑥𝑥) = sin(sin𝑥𝑥) , (0,0) 
 

  



CHAPTER 2 
SECTION 5 

 
DIFFERENTIATION 

IMPLICIT DIFFERENTIATION 
 

Let us start by doing a few familiar things:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 →  𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥.  Let 𝑦𝑦 = sin𝑥𝑥 →  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= cos 𝑥𝑥.  
Let  𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 + sin𝑥𝑥)3 →  𝑓𝑓′(𝑥𝑥) = 3(𝑥𝑥2 + sin𝑥𝑥)2(2𝑥𝑥 + cos 𝑥𝑥). 
 
These should all look familiar to you by now.  What do they all share in common?  You may not be able 
to guess where we are headed.  The property they all have in common is that they are all functions of 𝑥𝑥.  
You can write each one as 𝑦𝑦 = 𝑓𝑓(𝑥𝑥).  But what if we wanted to find the derivative of something like 
𝑥𝑥2 + 𝑦𝑦2 = 1 (the unit circle, which is not a function).  You could solve for 𝑦𝑦 first, but then you have this 
± case, which is not all that convenient. Now, what if we had something like 𝑦𝑦2 + 3𝑥𝑥𝑦𝑦2 − 2𝑥𝑥2𝑦𝑦 = 3𝑦𝑦3? 
This is even more difficult, because we don’t know how to solve for 𝑦𝑦.  We will not need to.  Instead, we 
will employ Implicit Differentiation. 
 
Recall the Chain Rule:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  We will use this to differentiate equations with respect to 𝑥𝑥, 
(equations that are not explicit functions of 𝑥𝑥.  Instead, we will use the fact that they are implicit 
functions of 𝑥𝑥, hence the term Implicit Differentiation). 
 

Steps to find 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 implicitly:  (Note:  Some texts use 𝑦𝑦′ interchangeable with 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  I will not do this, as I 

prefer Leibnitz’ notation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 as it is less vague).  (Also Note:  These steps are for finding 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 only, meaning 
we are considering 𝑦𝑦 as an implicit function of 𝑥𝑥, i.e. we are taking the derivative with respect to 𝑥𝑥. 
 

1) Take derivatives of both sides:  (Some students forget to take the derivative of the RHS). 
a) When taking a derivative involving 𝑥𝑥, do it the same as we always have. 

b) When taking the derivative involving 𝑦𝑦, multiply that term by 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

.  (This is the Chain Rule 
part.  This is because 𝑦𝑦 is implicitly a function of 𝑥𝑥, and we are taking the derivative with 

respect to 𝑥𝑥.  We could multiply the derivative involving 𝑥𝑥 by 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, but since this is just 1, there 
is no need).  (Also note that we have already been doing this without knowing it.  E.G., if 𝑦𝑦 =
𝑥𝑥2 → 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2𝑥𝑥 →   𝑑𝑑(𝑦𝑦)

𝑑𝑑𝑑𝑑
= 1 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. ) 

2) Solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 

a) Get all the terms with 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 on one side, and all the terms without 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 on the other side. 

b) Factor out the 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

c) Divide both sides of the equation to isolate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (if necessary). 

 

Let’s go back to our 2 original examples: 



𝒙𝒙𝟐𝟐 + 𝒚𝒚𝟐𝟐 = 𝟏𝟏:   

1) Take derivatives of both sides: 

2𝑥𝑥 + 2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 

                        Chain Rule 

 

2) Solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 
 

2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2𝑥𝑥: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
2𝑥𝑥
2𝑦𝑦

= −
𝑥𝑥
𝑦𝑦

. 

 
 
 

 
𝒚𝒚𝟐𝟐 + 𝟑𝟑𝟑𝟑𝒚𝒚𝟐𝟐 − 𝟐𝟐𝒙𝒙𝟐𝟐𝒚𝒚 = 𝟑𝟑𝒚𝒚𝟑𝟑: 
 
This one will involve the Product Rule as well: 
 

1) Take derivatives of both sides: 

2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 3𝑥𝑥 ∙ 2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 3𝑦𝑦2 − 2𝑥𝑥2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 4𝑥𝑥𝑥𝑥 = 9𝑦𝑦2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 

                         Product Rule              Product Rule 

 

2) Solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 

 

2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 6𝑥𝑥𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2𝑥𝑥2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 9𝑦𝑦2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −3𝑦𝑦2 + 4𝑥𝑥𝑥𝑥: 

 

Factor out the 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 to get:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(2𝑦𝑦 + 6𝑥𝑥𝑥𝑥 − 2𝑥𝑥2 − 9𝑦𝑦2) = −3𝑦𝑦2 + 4𝑥𝑥𝑥𝑥: 

              
 

 Divide:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −3𝑦𝑦2+4𝑥𝑥𝑥𝑥
2𝑦𝑦+6𝑥𝑥𝑥𝑥−2𝑥𝑥2−9𝑦𝑦2

 

 



 
EXAMPLE: 
 

1) 2𝑦𝑦4 − 2𝑥𝑥𝑥𝑥 = 7𝑥𝑥:  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 

8𝑦𝑦3 − 2𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2𝑦𝑦 = 7 

              Product Rule 
 

−2𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

= 7− 8𝑦𝑦3 + 2𝑦𝑦 →     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
−8𝑦𝑦3 + 2𝑦𝑦 + 7

−2𝑥𝑥
=

8𝑦𝑦3 − 2𝑦𝑦 − 7
2𝑥𝑥

. 

 
 
 
 

2) sin2 𝑥𝑥 − 𝑒𝑒𝑥𝑥𝑥𝑥 = 4𝑦𝑦−3 .    Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 
 

2 sin𝑥𝑥 cos 𝑥𝑥 − 𝑒𝑒𝑥𝑥𝑥𝑥 �𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑦𝑦� = −12𝑦𝑦−4 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  

                       Chain/Product Rules   
 
2 sin𝑥𝑥 cos 𝑥𝑥 − 𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− 𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥 = −12𝑦𝑦−4 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  

 
−𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 12𝑦𝑦−4 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −2 sin𝑥𝑥 cos 𝑥𝑥 + 𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥  

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(   −𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥 + 12𝑦𝑦−4) = −2 sin𝑥𝑥 cos 𝑥𝑥 + 𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥           
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2 sin 𝑥𝑥 cos𝑥𝑥+𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥

 −𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥+12𝑦𝑦−4
= 2 sin 𝑥𝑥 cos𝑥𝑥−𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥

 𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥−12𝑦𝑦−4
                                

 
 
 

3) �cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥 = 3𝑦𝑦2  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: 
 
1
2

(cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥)−
1
2 �sin𝑦𝑦 ∙

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑦𝑦� = 6𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
sin𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑥𝑥

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
= 6𝑦𝑦 ∙

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

�
sin𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
+

𝑥𝑥
2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥

− 6𝑦𝑦� == −
𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
 

 



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
− 𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
sin𝑦𝑦

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
+ 𝑥𝑥

2�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
− 6𝑦𝑦

=
−𝑦𝑦

sin𝑦𝑦 + 𝑥𝑥 − 12𝑦𝑦�cos 𝑦𝑦 + 𝑥𝑥𝑥𝑥
 

 
 

4) Let us now find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at a particular point.  We will proceed as we have before.  We can substitute 
our point in for (𝑥𝑥,𝑦𝑦) at the end, or do it after we take the derivative.  Let’s go ahead and do it 
before solving for 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
: 

 
Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  for 3𝑥𝑥2𝑦𝑦 − 2𝑥𝑥2 = 5𝑦𝑦 at the point (1,-1): 

 

3𝑥𝑥2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 6𝑥𝑥𝑥𝑥 − 4𝑥𝑥 = 5 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
Now let’s substitute (1,-1) for (𝑥𝑥,𝑦𝑦):  3 ∙ 12 ∙ 𝑑𝑑𝑦𝑦

𝑑𝑑𝑑𝑑
− 6 ∙ 1 ∙ (−1) − 4 ∙ 1 = 5 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
→ 

3 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 6− 4 = 5 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

→        2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 →        
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 

 
 

5) Let us find the equation of the tangent line for the equation in Example 4):  We found 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 at 
the point (1,-1).  Therefore, 𝑦𝑦 + 1 = 𝑥𝑥 − 1 →      𝑦𝑦 = 𝑥𝑥 − 2. 

 
 

6) Let’s find the equation of the tangent line for the circle 𝑥𝑥2 + 𝑦𝑦2 = 4 at the point (0,2):  First we 
find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
:     2𝑥𝑥 + 2𝑦𝑦 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0 →     𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝑥𝑥

𝑦𝑦
.     Substituting in (0,2) for (𝑥𝑥,𝑦𝑦) we get −0

2
= 0.  

Therefore, 𝑦𝑦 − 2 = 0 →     𝑦𝑦 = 2.  (Note:  we cannot find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  at (2,0) or at (-2,0), because the 
tangent line would be vertical with slopes equal to 0.  We recall an expression is not 
differentiable where it has a vertical tangent). 

 
7) We will now do something a little different.  We will find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 for an expression.  How will we do 

this?  Now, when taking the derivative involving an 𝑥𝑥 we will multiply that term by 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and when 

we take the derivative involving a 𝑦𝑦 we won’t multiply it by 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

, because in this case we are 
considering 𝑥𝑥 to be a function of 𝑦𝑦. 
 

2𝑥𝑥𝑥𝑥 + 𝑦𝑦2 − 3𝑥𝑥 = 10: 
 

2𝑥𝑥 + 2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∙ 𝑦𝑦 − 3 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 

 

2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 3 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −2𝑥𝑥 

 



 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(2𝑦𝑦 − 3) = −2𝑥𝑥 

 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= − 2𝑥𝑥

2𝑦𝑦−3
 

 
 
  



EXERCISES: 
 
 Find 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 by using Implicit Differentiation: 

 
1) 𝑥𝑥2 + 𝑦𝑦2 = 9 

 
2) 3𝑥𝑥2 − 2𝑦𝑦2 = 7 
 

3) 4𝑥𝑥2 − 2𝑦𝑦 = 3𝑥𝑥 
 

4) 2𝑥𝑥𝑦𝑦2 − 3𝑥𝑥2 = 4𝑦𝑦 
 

5) 3𝑥𝑥3𝑦𝑦2 − 4𝑥𝑥𝑥𝑥 = 2𝑦𝑦3 
 

6) 4𝑥𝑥2 − 2𝑥𝑥𝑥𝑥 − 12𝑥𝑥 = 𝑥𝑥𝑥𝑥 
 

7) 4𝑦𝑦𝑒𝑒𝑥𝑥 − sin𝑥𝑥 = tan2 𝑦𝑦 
 

8) √𝑥𝑥3 − sin2 𝑥𝑥 = 𝑒𝑒𝑦𝑦 
 

9) 𝑒𝑒2𝑥𝑥𝑥𝑥 − cos𝑦𝑦 = sin(𝑥𝑥𝑥𝑥) 
 

10) cot(𝑥𝑥𝑥𝑥) = �3𝑥𝑥2𝑦𝑦 
 

11) (4𝑥𝑥𝑥𝑥 − tan(2𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑦𝑦)= 1 
 

12) sin(𝑥𝑥 − 2𝑦𝑦) = 4𝑒𝑒2𝑥𝑥 − 𝑥𝑥𝑦𝑦−2 
 

13) tan(2𝑥𝑥𝑦𝑦2) + 4𝑒𝑒𝑥𝑥2𝑦𝑦 = 4𝑦𝑦7 
 

Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at given points: 
 

14) 𝑥𝑥2 + 2𝑦𝑦2 = 9  at the point (1,2) 
 

15) sin(𝑥𝑥𝑥𝑥) − 𝑒𝑒𝑥𝑥 = 1
2
𝑦𝑦  at the point (0,-2) 

 

16) 4𝑥𝑥𝑥𝑥 + 2𝑥𝑥 = 4𝑦𝑦  at the point (2,-1) 
 



17) Find the equation of the tangent line to the graphs in Exercises 14)-16)  at the given points 
in Exercises 14)-16). 

 
 

18)  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for the equations in Exercises 1) through 4). 

 
  



CHAPTER 2 
SECTION 6 

 
DIFFERENTIATION 

RELATED RATES 
 

What is a Related Rate?  First, it is an application of Implicit Differentiation, which we learned in the last 
section.  Second, it is a way of calculating a rate based on another known rate, related to the rate of 
interest. 
 
For Example:  Let’s say we have a circular object (perhaps a perfect circular puddle?), and it is growing.  
Let us also assume that we know the rate at which the radius is growing.  By knowing that information, 
and how to perform Implicit Differentiation, we can calculate how fast its area is growing. 
 
STEPS FOR CALCULATING A RELATED RATE: 
 

1) Draw a picture (or diagram) if possible. 
2) Label the picture and/or choose variables (if no picture is useful). 
3) Write an equation with the variables chosen that relates the information. 
4) Take time derivatives of both sides using Implicit Differentiation (Chain Rule).  What does this 

mean?  You must take derivatives of each term, and you must multiply each one by 𝑑𝑑(?)
𝑑𝑑𝑑𝑑

 where 
the ? is whatever variable you took the derivative of.  This is isomorphic to when we multiplied 
the term by 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 anytime we took the derivative involving a 𝑦𝑦.  We are now taking the derivative 

with respect to 𝑡𝑡.  In this case none of the variables in our equation will be 𝑡𝑡 (for time), so we 

have to multiply by 𝑑𝑑(?)
𝑑𝑑𝑑𝑑

 in each case. 
5) Substitute in all know values.  (Note:  sometimes students do this step too soon, and get 0 = 0). 
6) Solve for the unknown rate desired. 

 

EXAMPLE:  Let’s go back to our puddle example. Let’s say we have a completely circular puddle that has 
the radius increasing at a rate of 2 inches per second.  At what rate is its area increasing, when it’s radius 
is 2 feet? 

First we will draw a picture:  Then we will label it: 

 

Next, we write an equation:  Which equation will we need?  The area of a circle: 



𝐴𝐴 = 𝜋𝜋𝑟𝑟2 

Taking time derivatives of both sides, using Implicit Differentiation: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜋𝜋 ∙ 2𝑟𝑟 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

→   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝜋𝜋𝜋𝜋 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Next, we substitute in all known values: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝜋𝜋 ∙ 24 ∙ 2 = 96𝜋𝜋
𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑠𝑠2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

 

EXAMPLE:  Let us make a snowball, (a perfectly spherical one), that will increase in size as we make it.  

Its volume is increasing at a rate of 3 𝑐𝑐𝑚𝑚3

𝑠𝑠
. At what rate is its radius increasing when it is 8 𝑐𝑐𝑐𝑐? 

 

Let’s draw a picture, and label it: 

 

We need the equation for the volume of a sphere: 

𝑉𝑉 =
4
3
𝜋𝜋𝑟𝑟3 

Let’s take time derivatives of both sides: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4
3
𝜋𝜋 ∙ 3𝑟𝑟

2𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4𝜋𝜋𝑟𝑟2 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (Note that 4𝜋𝜋𝑟𝑟2 is the Surface Area of a sphere!  Pretty Cool right?!) 

 

Next, we substitute in all known values: 

3 = 4𝜋𝜋 ∙ 82 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Lastly we solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:    



𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
3

256𝜋𝜋
𝑐𝑐𝑐𝑐
𝑠𝑠

 

 

 

EXAMPLE:  Sand is being dumped by a dump truck forming a pile of sand in the shape of a cone.  The 
radius is increasing at a rate of 4 m/s, and the height is increasing at a rate of 6 m/s.  How fast is the 
volume increasing when the radius is 10 meters, and the height is 15 meters? 

 

Next, we need an equation for the volume of a cone: 

𝑉𝑉 =
1
3
𝜋𝜋𝑟𝑟2ℎ 

Taking time derivatives of both sides:  (We note that we have 3 related rates here instead of two as in 
the previous examples). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2
3
𝜋𝜋𝜋𝜋 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∙ ℎ + 1

3
𝜋𝜋𝑟𝑟2 ∙ 𝑑𝑑ℎ

𝑑𝑑𝑑𝑑
  using the Product Rule. 

Substituting the knowns values, we get: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
2
3
𝜋𝜋 ∙ 10 ∙ 4 ∙ 15 +

1
3
𝜋𝜋 ∙ 102 ∙ 6 = 400𝜋𝜋 + 200𝜋𝜋 = 600𝜋𝜋

𝑚𝑚3

𝑠𝑠
  

 

EXAMPLE:  Let’s explore a business example: 

Suppose that price 𝑝𝑝, in dollars, and number of sales, 𝑥𝑥, of a certain watch follows the equation 
 2𝑝𝑝 + 3𝑥𝑥 + 4𝑝𝑝𝑝𝑝 = 30.  Suppose also that 𝑝𝑝 and 𝑥𝑥 are both functions of time, measured in days.  Find 

the rate at which 𝑥𝑥  is changing when 𝑥𝑥 = 5,𝑝𝑝 = 10, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2: 
 
We already have an equation in this example:  
2𝑝𝑝 + 3𝑥𝑥 + 4𝑝𝑝𝑝𝑝 = 30 
 
Let’s take time derivatives: 
 

2 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 3 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 4𝑝𝑝 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 4𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 



 
Now, we will substitute our known values: 
 

2 ∙ 2 + 3 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 4 ∙ 10 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 4 ∙ 5 ∙ 2 = 0 

43 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −44 →   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −44
43

  # 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑

.  (This is negative.  That is okay.  We are  losing some sales per day). 

 
 
EXAMPLE:  A blue car is traveling West at 60 mph, and a red car is traveling South at 70 mph.  Both are 
headed to the same place.  At what rate are the cars approaching each other when the blue car is 3 
miles from the destination, and the red car is 4 miles from the destination? 
 

 
 

 
We let Z be the destination for both cars.  Let y be the distance from the blue car to Z.  Let x be the 
distance from the red car to Z.  We need a formula.  We use the Pythagorean Theorem: 
 
𝑥𝑥2 + 𝑦𝑦2 = 𝑧𝑧2 
 

We note that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −70 mph, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −60 mph.  Why are they negative?  It is because their distances 
are decreasing. 
 
Let’s take time derivatives: 
 

2𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 2𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑧𝑧 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
Next, we need to calculate 𝑧𝑧: 
 
When 𝑥𝑥 = 4,𝑦𝑦 = 3, we get: 42 + 32 = 𝑧𝑧2 →   𝑧𝑧 = 5 
 
Now we substitute all known values: 
 



2 ∙ 4 ∙ (−70) + 2 ∙ 6 ∙ (−60) = 2 ∙ 5 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
→             𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −128 mph 

 

EXAMPLE:  A plane is flying at an altitude 5.5 miles.  It will pass over the Empire State Building.   

                             

 
 
Let 𝑥𝑥 = horizontal distance, 𝑦𝑦 = vertical distance, and 𝑧𝑧 = hypotenuse.  If 𝑧𝑧 is decreasing at a rate of 
550 mph when 𝑧𝑧  is 20 miles, what is the speed of the plane?  𝑦𝑦 = 5.5 miles.  𝑧𝑧 = 20 miles.  Let us find 
𝑥𝑥.  𝑥𝑥2 + 5.52 = 202 →    𝑥𝑥 = √400 − 30.25 ≈ 19.23. 
 
Our equation is:  𝑥𝑥2 + 5.52 = 𝑧𝑧2 
 
Taking time derivatives: 
 

2𝑥𝑥 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 0 = 2𝑧𝑧 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
Substituting all knowns: 
 

2 ∙ 19.23 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 ∙ 20 ∙ 550 →   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 572 𝑚𝑚𝑚𝑚ℎ 

 
  



EXERCISES:   

 

1) Let 𝑦𝑦 = 2𝑥𝑥2𝑦𝑦 − 3𝑦𝑦.  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2 and 𝑥𝑥 = 1,𝑦𝑦 = 0 
 

2) Let 3𝑧𝑧3 = 𝑒𝑒𝑥𝑥2 + 5𝑦𝑦 + 18.  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 4, 𝑥𝑥 = 0,𝑦𝑦 = 1, 𝑧𝑧 = 8 
 

3) Let 𝑒𝑒𝑥𝑥 = 𝑥𝑥𝑦𝑦2 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝑥𝑥.  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 when 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1, 𝑥𝑥 = 0,𝑦𝑦 = 3, 𝑧𝑧 = 𝜋𝜋
2
 

 
4) Suppose that price 𝑝𝑝, in dollars, and number of sales, 𝑥𝑥, of a certain watch follows the equation 

 4𝑝𝑝 + 2𝑥𝑥 + 3𝑝𝑝𝑝𝑝 = 60.  Suppose also that 𝑝𝑝 and 𝑥𝑥 are both functions of time, measured in days.  

Find the rate at which 𝑥𝑥  is changing when 𝑥𝑥 = 20,𝑝𝑝 = 5, and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 5: 
 

5) A raindrop keeps growing larger as it spreads out on the concrete.  It is growing uniformly, and is 
perfectly circular.  What is the rate of increase of its area, when its radius is 2𝑚𝑚𝑚𝑚?  Its radius is 
increasing at a rate of 1𝑚𝑚𝑚𝑚

𝑠𝑠
. 

 

6) A circular water drop is evaporating.  Its area is decreasing at a rate of −3 𝑛𝑛𝑚𝑚2

𝑠𝑠
.  At what rate is 

its radius decreasing , when its radius is 5 𝑚𝑚𝑚𝑚? 
 

7) Sally is making a snowball.  It is perfectly spherical.  Its volume is growing at a rate of 12 𝑐𝑐𝑚𝑚3

𝑠𝑠
.  At 

what rate is its radius increasing when its radius is 20 𝑐𝑐𝑐𝑐? 
 

8) A snowball is melting.  Its radius is shrinking at a rate of −2𝑚𝑚𝑚𝑚
𝑠𝑠

.  At what rate is its Surface Area 

decreasing when its radius is 8 𝑐𝑐𝑐𝑐? 
 

9) Two cars are headed away from each other.  Car A is headed North, and car B is headed East.  
Car A is traveling at 55 mph, and car B is traveling at 75 mph.  At what rate is their distance 
increasing two hours after they leave each other? 
 

10) A particle travels along the curve 𝑦𝑦 = 2𝑥𝑥 + 𝑒𝑒𝑧𝑧 .  The rate in the x-direction is 2 𝑐𝑐𝑐𝑐
𝑠𝑠

, and in the z-

direction, it travels at −1 𝑐𝑐𝑐𝑐
𝑠𝑠

.  At what rate does it travel in the y-direction, when 𝑥𝑥 = 1, 𝑧𝑧 = 0? 
 

11) A rectangular ice cube is melting.  Its height is shrinking at a rate of 4 𝑚𝑚𝑚𝑚
𝑠𝑠

.  Its width is shrinking 

at a rate of 5𝑚𝑚𝑚𝑚
𝑠𝑠

, and its volume is decreasing at a rate of 9𝑚𝑚𝑚𝑚3

.𝑠𝑠
.    At what rate is depth 

shrinking, when its height is 6 𝑐𝑐𝑐𝑐, its width is 3 𝑐𝑐𝑐𝑐, and its depth is 1.5 𝑐𝑐𝑚𝑚? 
 



12) A man is running diagonally across a football field.  Its dimensions are 360 ×  160 feet.  If he is 
running at 20 𝑓𝑓𝑓𝑓

𝑠𝑠
, at what rate is his horizontal distance (the 160 ft side) decreasing when he is 20 

feet from the corner he is headed to? 
 

13) Coal is being dumped into a pile of in the shape of a cone.  The radius is increasing at a rate of 7 
m/s, and the height is increasing at a rate of 10 m/s.  How fast is the surface area increasing 
when the radius is 5 meters, and the height is 10 meters? 
 

14) Liquid is being poured into an object shaped like an upside down cone.  Its volume is increasing 

at a rate of 5 𝑐𝑐𝑚𝑚3

𝑠𝑠
, and its radius is increasing at a rate of 2 𝑐𝑐𝑐𝑐

𝑠𝑠
  At what rate is its height 

increasing when its height is 12 𝑐𝑐𝑐𝑐, and its radius is 3 𝑐𝑐𝑐𝑐? 
 

15) A flat raft is moving away from a dock.  The dock is 2 m higher than the raft. If the raft is moving 
at a rate of 3 𝑚𝑚

𝑠𝑠
, what is the rate it is moving away from the dock, when it is 6 m away? 

 
16)  

 

 
We have 3 resistors in parallel with resistances as shown.  The total resistance, 𝑅𝑅, is given by the 
equation 1

𝑅𝑅
= 1

𝑅𝑅1
+ 1

𝑅𝑅2
+ 1

𝑅𝑅3
.  If 𝑅𝑅1 is increasing by . 1 𝛺𝛺

𝑠𝑠
, 𝑅𝑅2 is increasing by . 2 𝛺𝛺

𝑠𝑠
, and 𝑅𝑅3 is 

increasing by . 4 𝛺𝛺
𝑠𝑠

, at what rate is 𝑅𝑅 changing, when 𝑅𝑅1,𝑅𝑅2 ,𝑅𝑅3 are as given in the diagram? 
 

17) Two people are heading toward each other.  If one is walking south at 3 mph, and the other is 
running at 7 mph.  At what rate are the two approaching each other when the runner is 5 miles 
from the destination, and the walker is 12 miles from the destination? 

 

18) A ladder is propped up on a wall. If the top of the ladder slides down at 2 𝑓𝑓𝑓𝑓
𝑠𝑠

, and the ladder is 

6 𝑓𝑓𝑓𝑓 tall, how fast is the bottom of the ladder sliding away from the wall when it is 5 𝑓𝑓𝑓𝑓 from the 
wall? 
 

19)  A plane is flying at an altitude 6.5 miles.  It will pass over a radar station.  If its rate from the 
plane to the station is decreasing at a rate of 550 mph when 𝑧𝑧  is 20 miles, what is the speed of 
the plane? 
 



20) A right triangle has sides, 7, 24, 25 cm.  If the width of the triangle is growing at a rate of 
1 𝑐𝑐𝑐𝑐

𝑠𝑠
, and the height is growing at a rate of 2 𝑐𝑐𝑐𝑐

𝑠𝑠
, at what rate is the hypotenuse increasing? 

 
21) A right triangle has its length decreasing at a rate of 1 cm

𝑠𝑠
.  How fast is the angle decreasing 

when its length is 4 and its width is 3 if the base is fixed?.   
 

22) A cylinder is filled with oil.  If its volume is increasing at a rate of 4 𝑐𝑐𝑚𝑚3

𝑠𝑠
, at what rate is its height 

increasing when its height is 8 cm, and its radius is 2 cm? 
 
  



CHAPTER 2 
SECTION 7 

 
DIFFERENTIATION 

DERIVATIVES OF LOGARITHMIC FUNCTIONS AND INVERSE TRIGONOMETRIC FUNCTIONS 
 

THE NATURAL LOGARITHMIC FUNCTION: 
 
Let’s begin by using base 𝑒𝑒 for our logarithmic functions.   
 
Let us recall a logarithmic function and what it is:  Recall that it is simply the inverse of the exponential 
function.  We start with 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥, as a one-to-one function.  This gives 𝑦𝑦 = 𝑎𝑎𝑥𝑥 .  To derive its inverse:  
𝑥𝑥 = 𝑎𝑎𝑦𝑦 .  This is the logarithmic function.  With functions, we want to solve for 𝑦𝑦.  So to solve for 𝑦𝑦, we 
get the notation 𝑦𝑦 = log𝑎𝑎 𝑥𝑥.  Using base 𝑒𝑒, we get 𝑓𝑓(𝑥𝑥) = ln𝑥𝑥. 
 
Next, we derive the derivative:   
 
This time we will not use the definition, but instead use the rules we have learned thus far: 
 
First:  𝑓𝑓(𝑥𝑥) = ln 𝑥𝑥 →    𝑦𝑦 = ln𝑥𝑥 
 
Rewriting as an exponential: 
 
𝑒𝑒𝑦𝑦 = 𝑥𝑥 
 
We will next take derivatives of both sides using Implicit Differentiation: 
 

𝑒𝑒𝑦𝑦 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 → 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1
𝑒𝑒𝑦𝑦

 

 
But recall 𝑒𝑒𝑦𝑦 = 𝑥𝑥 
 

Therefore 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑥𝑥

. 
 

To summarize:  If 𝒇𝒇(𝒙𝒙) = 𝐥𝐥𝐥𝐥 𝒙𝒙  →    𝒇𝒇′(𝒙𝒙) = 𝟏𝟏
𝒙𝒙
. 

 
This is the base we will use most often.   
 
For other bases: 
 
𝑦𝑦 = log𝑎𝑎 𝑥𝑥 



Rewrite as an exponential: 
 

𝑎𝑎𝑦𝑦 = 𝑥𝑥 →           𝑎𝑎𝑦𝑦 ∙ ln 𝑎𝑎 ∙
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

𝑎𝑎𝑦𝑦 ln 𝑎𝑎
=

1
𝑥𝑥 ∙ ln 𝑎𝑎

 

 

CHAIN RULE:   

Recall the Chain Rule:  Let 𝐹𝐹(𝑥𝑥) = 𝑓𝑓�𝑔𝑔(𝑥𝑥)�.  Then 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥).  We also said, the derivative 
of the outside times the derivative of the inside. 

How does this apply to the Natural Logarithmic Function?  Let 𝑓𝑓(𝑥𝑥) = ln(𝑢𝑢), and let 𝑢𝑢 = 𝑔𝑔(𝑥𝑥).  Then 

𝑓𝑓′�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) = 1
u
∙ 𝑢𝑢′ = 1

𝑔𝑔(𝑥𝑥) ∙ 𝑔𝑔
′(𝑥𝑥) = 𝑔𝑔′(𝑥𝑥)

𝑔𝑔(𝑥𝑥)
.  (Note that the idea of the derivative of the outside times 

the derivative of the inside still applies here, where ln(𝑢𝑢) = ln (𝑔𝑔(𝑥𝑥)) is the outside function, and 𝑢𝑢 =
𝑔𝑔(𝑥𝑥) is the inside function. 

 

EXAMPLE: 

1) Let 𝑓𝑓(𝑥𝑥) = ln(𝑥𝑥2 + 1).  Find 𝑓𝑓′(𝑥𝑥).  𝑓𝑓′(𝑥𝑥) = 1
𝑥𝑥2+1

∙ (2𝑥𝑥),  where 1
𝑥𝑥2+1

 is the derivative of the 
outside, and 2𝑥𝑥 is the derivative of the inside. 
 

2) Let 𝑦𝑦 = 𝑒𝑒𝑥𝑥 ln(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 3𝑥𝑥3).  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝑥𝑥 ∙ 1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+3𝑥𝑥3

∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 9𝑥𝑥2) + 𝑒𝑒𝑥𝑥 ln(sin𝑥𝑥 + 3𝑥𝑥3) =
𝑒𝑒𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+9𝑥𝑥2𝑒𝑒𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+3𝑥𝑥3
+ 𝑒𝑒𝑥𝑥 ln(sin𝑥𝑥 + 3𝑥𝑥3).  We used the Product Rule with the Chain Rule, starting with 

the Product Rule. 
 

3) Let 𝑦𝑦 = ln(ln(ln(𝑥𝑥))).  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  First, we note that this is a multiple Chain Rule Problem.  We 

get:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
ln(𝑙𝑙𝑙𝑙(𝑥𝑥)) ∙

1
ln(𝑥𝑥) ∙

1
𝑥𝑥

. 
               𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∙ 𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ∙ 𝑑𝑑(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (not very formal, but will give you the idea in simple language). 

RULES OF LOGARITHMS: 

Let us briefly review the rules for Logarithms that we recall from our algebra course: 

1) log𝑎𝑎 𝑥𝑥𝑥𝑥 = log𝑎𝑎 𝑥𝑥 + log𝑎𝑎 𝑦𝑦 
 

2) log𝑎𝑎
𝑥𝑥
𝑦𝑦

= log𝑎𝑎 𝑥𝑥 − log𝑎𝑎 𝑦𝑦 

 
3) log𝑎𝑎 𝑥𝑥𝑐𝑐 = 𝑐𝑐 ∙ log𝑎𝑎 𝑥𝑥 

 



(Note:  We will not prove these here as we have already done so in our algebra courses). 

 

EXAMPLE: 

1) Let 𝑓𝑓(𝑥𝑥) = ln[(𝑒𝑒𝑥𝑥 + 7𝑥𝑥)�𝑥𝑥2 − 3𝑥𝑥].   This looks challenging at first, but with the use of the 
Rules for Logarithms, it is much easier.  𝑓𝑓(𝑥𝑥) = ln(𝑒𝑒𝑥𝑥 + 7𝑥𝑥) + 1

2
ln(𝑥𝑥2 − 3𝑥𝑥), applying Rule 1 

and Rule 3.  Then 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥+7
𝑒𝑒𝑥𝑥+7𝑥𝑥

+ 2𝑥𝑥−3
2(𝑥𝑥2−3𝑥𝑥)

 

 

2) Let 𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙 �𝑥𝑥
4+3𝑥𝑥
𝑥𝑥−1

�.  Again, we will use Rules for Logarithms.  Using Rule 2:   

𝑓𝑓(𝑥𝑥) = ln(𝑥𝑥4 + 3𝑥𝑥) − ln(𝑥𝑥 − 1).  Then we get:  𝑓𝑓′(𝑥𝑥) = 4𝑥𝑥3+3
𝑥𝑥4+3𝑥𝑥

− 1
𝑥𝑥−1

. 

 

3) Let 𝑦𝑦 = 𝑙𝑙𝑙𝑙 ��sin 𝑥𝑥+2𝑥𝑥
5�3

𝑥𝑥2−10𝑥𝑥
� = 3 ln(sin𝑥𝑥 + 2𝑥𝑥5) − ln(𝑥𝑥2 − 10𝑥𝑥).  Then 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 3 cos𝑥𝑥+30𝑥𝑥4

sin 𝑥𝑥+2𝑥𝑥5
− 2𝑥𝑥−10

𝑥𝑥2−10𝑥𝑥
. 

 

 

 LOGARITHMIC DIFFERENTIATION: 

What is Logarithmic Differentiation?  It is a way to make a complicated derivative much easier by taking 
the Natural Logarithm of both sides, applying Rules of Logarithms, and then taking the derivative of both 
sides using Implicit Differentiation. 

STEPS FOR LOGARITHMIC DIFFERENTIATION: 

1) Take the Natural Logarithm of both sides of the equation. 
 

2) Use Rules of Logarithms to fully expand the Logarithms. 
 

3) Take the derivative of both sides with respect to 𝑥𝑥, using Implicit Differentiation. 
 

4) Solve for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 
 

EXAMPLE:  Let 𝑦𝑦 = �3𝑥𝑥2−9�
1
3(𝑒𝑒𝑥𝑥−2𝑥𝑥)

(4𝑥𝑥2−9)2(6𝑥𝑥−2) .  In observing this function, we note that we would have to use the 

Chain Rule, the Quotient Rule, and the Product Rule all at the same time.  Let us use Logarithmic 
Differentiation instead. 



First, take the 𝑙𝑙𝑙𝑙 of both sides:  ln 𝑦𝑦 = 𝑙𝑙𝑙𝑙 ��3𝑥𝑥
2−9�

1
3(𝑒𝑒𝑥𝑥−2𝑥𝑥)

(4𝑥𝑥2−9)2(6𝑥𝑥−2) �.  Next, we will use Rules of Logarithms to 

rewrite the Right Hand Side.  ln𝑦𝑦 = 1
3

ln(3𝑥𝑥2 − 9) + ln(𝑒𝑒𝑥𝑥 − 2𝑥𝑥) − 2 ln(4𝑥𝑥2 − 9) − ln(6𝑥𝑥 − 2).  It 
already looks better! 

 

Next, we take the derivative of both sides, with respect to 𝑥𝑥, using Implicit Differentiation: 

1
𝑦𝑦
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 6𝑥𝑥
9𝑥𝑥2−27

+ 𝑒𝑒𝑥𝑥−2
𝑒𝑒𝑥𝑥−2𝑥𝑥

− 16𝑥𝑥
4𝑥𝑥2−9

− 6
6𝑥𝑥−2

.  (Not bad compared to what it would have been!).  Then Solving 

for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦 � 6𝑥𝑥
9𝑥𝑥2−27

+ 𝑒𝑒𝑥𝑥−2
𝑒𝑒𝑥𝑥−2𝑥𝑥

− 16𝑥𝑥
4𝑥𝑥2−9

− 6
6𝑥𝑥−2

� = �3𝑥𝑥2−9�
1
3(𝑒𝑒𝑥𝑥−2𝑥𝑥)

(4𝑥𝑥2−9)2(6𝑥𝑥−2) �
6𝑥𝑥

9𝑥𝑥2−27
+ 𝑒𝑒𝑥𝑥−2

𝑒𝑒𝑥𝑥−2𝑥𝑥
− 16𝑥𝑥

4𝑥𝑥2−9
− 6

6𝑥𝑥−2
�. 

 

 

POWER RULE PROOF: 

We finally prove the Power Rule.  We can now do this proof without the definition (which we skipped 
previously, due to its complexity), by using rules that we have recently learned, including the derivative 
of the Logarithmic Function, Implicit Differentiation, and Logarithmic Differentiation. 

Recall the Power Rule:  If 𝑦𝑦 = 𝑥𝑥𝑛𝑛 , then 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑛𝑛𝑥𝑥𝑛𝑛−1. 

PROOF:  First, we take the Natural Logarithm of both sides:  ln𝑦𝑦 = ln(𝑥𝑥𝑛𝑛).  Next, we apply Rule 3 of 
Logarithmic Rules to get:  ln 𝑦𝑦 = 𝑛𝑛 ln 𝑥𝑥.  Now, we take the derivative of both sides with respect to 

𝑥𝑥, using Implicit Differentiation:  1
𝑦𝑦
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑛𝑛
𝑥𝑥
→         𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑦𝑦 ∙ 𝑛𝑛

𝑥𝑥
.  But 𝑦𝑦 = 𝑥𝑥𝑛𝑛 .  So, therefore:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑥𝑥𝑛𝑛 ∙ 𝑛𝑛

𝑥𝑥
=

𝑛𝑛𝑥𝑥𝑛𝑛−1 .  (𝑥𝑥 ≠ 0.) 

 

 

 

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS: 

 

Let’s start with the Inverse Sine Function or 𝑓𝑓(𝑥𝑥) = sin−1 𝑥𝑥 = arcsin𝑥𝑥.  So 𝑥𝑥 = sin𝑦𝑦 when −𝜋𝜋
2

< 𝑦𝑦 < 𝜋𝜋
2

. 

(Recall this is how we write the inverse function).  Then taking derivatives of both sides with respect to 
𝑥𝑥:  1 = cos 𝑦𝑦 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
→      𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1

cos 𝑦𝑦
.   Now, we can write cos 𝑦𝑦 = �1− sin2 𝑦𝑦  (by using the Pythagorean 

Trigonometric Identity).  But recall we have 𝑥𝑥 = sin𝑦𝑦,  so 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
√1−𝑥𝑥2

. 

 



So the derivative of 𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏 𝒙𝒙 = 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝒙𝒙 = 𝟏𝟏
�𝟏𝟏−𝒙𝒙𝟐𝟐

. 

The Derivatives of all of the Inverse Trigonometric Functions are as follows:  (Note the proofs are similar, 
and left as an exercise for the student): 

 

Function Derivative 
sin−1 𝑥𝑥 1

√1 − 𝑥𝑥2
 

cos−1 𝑥𝑥 −
1

√1 − 𝑥𝑥2
 

tan−1 𝑥𝑥 1
1 + 𝑥𝑥2

 

csc−1 𝑥𝑥 −
1

𝑥𝑥√𝑥𝑥2 − 1
 

sec−1 𝑥𝑥 1
𝑥𝑥√𝑥𝑥2 − 1

 

cot−1 𝑥𝑥 −
1

1 + 𝑥𝑥2
 

 

 

EXAMPLE: 

1) Let 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 ∙ arcsin𝑥𝑥.  Find 𝑓𝑓′(𝑥𝑥):  We use the Product Rule:  𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥
√1−𝑥𝑥2

+ 2 arcsin 𝑥𝑥. 
 

2) Let 𝑦𝑦 = tan−1 2𝑥𝑥.  Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:  Here we use the Chain Rule.  How do we do this?  We substitute the 

2𝑥𝑥  for 𝑥𝑥 in the formula for the derivative of 𝑦𝑦 = tan−1 𝑥𝑥.  Then we have to multiply the new 
function by the derivative of the “inside”, which in this case, its derivative is 2.  Therefore, 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 

 
1

1+(2𝑥𝑥)2
∙ 2 = 2

1+4𝑥𝑥2.
  

 

3) Let 𝑓𝑓(𝑥𝑥) = arccos 𝑥𝑥3 .  Then 𝑓𝑓′(𝑥𝑥) = − 1
�1−(𝑥𝑥3)2

∙ 3𝑥𝑥2 = − 3𝑥𝑥2

√1−𝑥𝑥6.
 

 

4) Let 𝑦𝑦 = cot−1( 𝑥𝑥2 + 2).   Find, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

:  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= − 1
1+(𝑥𝑥2+2)2 ∙ 2𝑥𝑥 = − 2𝑥𝑥

𝑥𝑥4+4𝑥𝑥2+5
 . 

 

  



EXERCISES: 
 

Differentiate: 

 
1) 𝑓𝑓(𝑥𝑥) = ln 𝑥𝑥2 

 
2) 𝑓𝑓(𝑥𝑥) = ln (2𝑥𝑥 − 4) 
 
3) 𝑦𝑦 = 3𝑥𝑥2ln (3𝑥𝑥) 
 
4) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 ln𝑥𝑥 
 
5) 𝑦𝑦 = ln (4𝑥𝑥3 − 𝑥𝑥−2) 
 

6) 𝑓𝑓(𝑥𝑥) = ln (𝑥𝑥2−9)
𝑒𝑒𝑥𝑥+6𝑥𝑥3

 
 
7) 𝑦𝑦 = ln (𝑒𝑒𝑥𝑥) 
 
8) 𝑦𝑦 = ln [(𝑥𝑥2 − 9)(4𝑥𝑥3 + 2𝑥𝑥)] 
 
9) 𝑓𝑓(𝑡𝑡) = 𝑙𝑙𝑙𝑙[(2𝑥𝑥 + 7)2(3𝑥𝑥4 + 3𝑥𝑥2)3] 
 
10) 𝑦𝑦 = ln�(2𝑥𝑥 − 2)3√𝑥𝑥2 + 9𝑥𝑥� 
 

11) 𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙 � 𝑥𝑥+1
2𝑥𝑥−2

� 
 

12) 𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙 ��14𝑥𝑥
3+2𝑥𝑥2−9𝑥𝑥�3

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−12𝑥𝑥)4 � 

 

13) 𝑓𝑓(𝑥𝑥) = 𝑙𝑙𝑙𝑙 � √2𝑥𝑥+3
(4𝑥𝑥2−3𝑥𝑥)2� 

 

14) 𝑦𝑦 = 𝑙𝑙𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑥𝑥
1
3

3𝑥𝑥−9
 

 
15) 𝑦𝑦 = ln (ln(ln(𝑥𝑥2))) 
 
16) 𝑦𝑦 = ln (ln(sin𝑥𝑥)) 
 
17) 𝑦𝑦 = 𝑙𝑙𝑙𝑙�(tan2 𝑥𝑥 − 5𝑥𝑥)  
 
18) 𝑦𝑦 = arcsin (5𝑥𝑥) 



 
19) 𝑦𝑦 = cos−1(3𝑥𝑥2 − 2) 
 
20) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2 tan−1 3𝑥𝑥 
 

21) 𝑓𝑓(𝑡𝑡) = arccot�2𝑥𝑥2�
ln(3𝑥𝑥)  

 

22) 𝑦𝑦 = csc−1(2𝑥𝑥−9)
𝑒𝑒2𝑥𝑥

 
 

23) 𝑦𝑦 = arcsin(14𝑥𝑥2 − 12𝑥𝑥)
1
3 

 

24) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �12𝑥𝑥
3−9𝑥𝑥

3−𝑥𝑥2
� 

 
25) 𝑓𝑓(𝑥𝑥) = arcsin (arcsin𝑥𝑥) 

 

Find the equation of the tangent line of the following function at the given point: 

26) 𝑓𝑓(𝑥𝑥) = ln(𝑥𝑥2 − 3) , (2,0): 

 

Find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for the following functions using Implicit Differentiation: 

 
27) ln 𝑦𝑦 = arctan 2𝑥𝑥 + 𝑦𝑦2 ln 𝑥𝑥 

 
28) 3𝑥𝑥𝑥𝑥 = cos−1 𝑥𝑥𝑥𝑥 
 

 
 

Use Logarithmic Differentiation to find the derivative of the following functions: 

 
29) 𝑦𝑦 = �𝑥𝑥2 − ln(3𝑥𝑥) (4𝑥𝑥3 + 4)3 

 

30) 𝑓𝑓(𝑥𝑥) = �𝑒𝑒𝑥𝑥2 − 𝑥𝑥−4�
1
3(19𝑥𝑥 − 3)7 

 

31) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥4−20𝑥𝑥)2

√4𝑥𝑥+10
 

 
32) 𝑦𝑦 = 𝑥𝑥𝑥𝑥  
 



33) 𝑦𝑦 = �3𝑥𝑥2−7𝑥𝑥�2(4𝑥𝑥−9)3

(20𝑥𝑥3+2)4√14𝑥𝑥2−8
 

 

34) 𝑓𝑓(𝑡𝑡) = � 4𝑥𝑥2−2
arcsin𝑥𝑥

 

 
35) 𝑦𝑦 = 𝑥𝑥𝑒𝑒𝑥𝑥  
 

Challenge problem:  Prove the rest of the Inverse Trigonometric derivatives. 

  



CHAPTER 2 
SECTION 8 

LINEAR APPROXIMATIONS AND DIFFERENTIALS 
HYPERBOLIC FUNCTIONS 

 
Notice when you zoom into a point on the curve of a function, the tangent line approximates the actual 
curve as you zoom more and more. 
 
Recall the following graph: 
 

 
The tangent line is plotted at 𝑥𝑥 = 1.   
 

Notice, the closer you get to 𝑥𝑥 = 1, the more the tangent line looks like the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 . 

The equation of the tangent line at 𝑥𝑥 = 𝑎𝑎, is:  𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎) →        

𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎). 

 

So the Linear Approximation (or tangent line approximation of 𝑓𝑓at 𝑎𝑎 is: 

𝑳𝑳(𝒙𝒙) = 𝒇𝒇(𝒂𝒂) + 𝒇𝒇′(𝒂𝒂)(𝒙𝒙 − 𝒂𝒂). 

 

EXAMPLE:   

1)  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2  at 𝑥𝑥 = 1 (as in the example above).  Then 𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 →     𝑓𝑓′(1) = 2.  The 
Linear Approximation is 𝐿𝐿(𝑥𝑥) = 1 + 2(𝑥𝑥 − 1) →    𝐿𝐿(𝑥𝑥) = 2𝑥𝑥 − 1, which we observe is the 
equation of the tangent line that we had above. 

2) Let 𝑓𝑓(𝑥𝑥) = √𝑥𝑥  at 𝑎𝑎 = 4.  Find the Linear Approximation:  𝑓𝑓′(𝑥𝑥) = 1
2
𝑥𝑥−

1
2 = 1

2√𝑥𝑥
.  At 𝑎𝑎 = 4:  

 𝑓𝑓′(4) = 1
2√4

= 1
4
.  Then 𝐿𝐿(𝑥𝑥) = 2 + 1

4
(𝑥𝑥 − 4) →      𝐿𝐿(𝑥𝑥) = 1

4
𝑥𝑥 + 1. 

 



We notice that so far it’s no different from the equations of tangent lines we have found before. 

What would be a more practical example? 

 

3) We can Linear Approximation to approximate square roots that would be difficult to find without 
the use of a calculator. Let’s approximate √9.1.  We will use the function 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 8 at 𝑎𝑎 =
1.  

𝑓𝑓′(𝑥𝑥) = 1
2

(𝑥𝑥 + 8)−
1
2 = 1

2√𝑥𝑥+8
.  At 𝑎𝑎 = 1, 𝑓𝑓′(1) = 1

6
 So 𝐿𝐿(𝑥𝑥) = 3 + 1

6
(𝑥𝑥 − 1) →  

 𝐿𝐿(𝑥𝑥) = 1
6
𝑥𝑥 + 17

6
.   So √9.1 ≈ 17

6
+ 1

6
∙ 1.1 = 3.016� . 

 
 
DIFFERENTIAL:   
 

 
Notice Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑 is the change in 𝑥𝑥, and we already know Δ𝑦𝑦 is the change in 𝑦𝑦, or the change in height of 
the function over the interval Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑.  Now note, that 𝑑𝑑𝑑𝑑 is the change in height of the tangent line over 
the interval Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑. 
 
Recall the Linear Approximation (or equation of the tangent line) from the first part of this section:   
 
𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎).    
 
Let us also note that 𝑥𝑥 − 𝑎𝑎 can be written as Δ𝑥𝑥 (or change in 𝑥𝑥).  Also note, the change in 𝑦𝑦 is Δ𝑦𝑦, and 
can be written as Δ𝑦𝑦 = 𝑓𝑓(𝑎𝑎 + Δ𝑥𝑥) − 𝑓𝑓(𝑎𝑎) , at the value 𝑥𝑥 = 𝑎𝑎, or more generally  Δ𝑦𝑦 = 𝑓𝑓(𝑥𝑥 + Δ𝑥𝑥) −
𝑓𝑓(𝑥𝑥). 
 
We must understand that the differential is very small.  In Physics, we use differentials often, and we often 
refer to them as differentially small.  When Δ𝑥𝑥 is differentially small, we define Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑, and the 
differential becomes: 
 
𝒅𝒅𝒚𝒚 = 𝒇𝒇′(𝒙𝒙)𝒅𝒅𝒅𝒅. 
 
Note that 𝑑𝑑𝑑𝑑 is the “dependent” variable, depending on both 𝑥𝑥 and Δ𝑥𝑥  (or 𝑑𝑑𝑑𝑑).   
 



We also observe that if we divide both sides by 𝑑𝑑𝑑𝑑 ≠ 0 →     𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓′(𝑥𝑥).  Whereas 𝑓𝑓′(𝑥𝑥) is the slope of 
the tangent line, 𝑑𝑑𝑑𝑑 is the change in the linearization when 𝑥𝑥 changes by Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑. 
 
EXAMPLE: 
 

1) Find the differential, 𝑑𝑑𝑑𝑑, for 𝑦𝑦 = 3𝑥𝑥2 .  𝑑𝑑𝑑𝑑 = 6𝑥𝑥𝑥𝑥𝑥𝑥. 
                                                                                               (𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑) 
 

2) Find the differential for 𝑦𝑦 = √𝑒𝑒𝑥𝑥 + 𝑥𝑥3 .  𝑑𝑑𝑑𝑑 = 1
2

(𝑒𝑒𝑥𝑥 + 𝑥𝑥3)−
1
2(𝑒𝑒𝑥𝑥 + 3𝑥𝑥2)𝑑𝑑𝑑𝑑 = �𝑒𝑒𝑥𝑥+3𝑥𝑥2�

2√𝑒𝑒𝑥𝑥+𝑥𝑥3
𝑑𝑑𝑑𝑑. 

 

3) Find the differential for 𝑦𝑦 = sin2 𝑥𝑥 − tan−1 𝑥𝑥.  𝑑𝑑𝑑𝑑 = �2 sin𝑥𝑥 cos 𝑥𝑥 − 1
1+𝑥𝑥2

� 𝑑𝑑𝑑𝑑. 
 

EXAMPLE:   

Compare Δ𝑦𝑦 with 𝑑𝑑𝑑𝑑 for 𝑦𝑦 = 𝑥𝑥3 − 9𝑥𝑥, when x changes from 1 to 1.01:   

 First, Δ𝑦𝑦 = 𝑓𝑓(𝑎𝑎 + Δ𝑥𝑥) − 𝑓𝑓(𝑎𝑎) →     Δ𝑦𝑦 = 𝑓𝑓(1.01) − 𝑓𝑓(1) = (1.013 − 9 ∙ 1.01) − (13 − 9 ∙ 1) =
                       −0.059699. 

 Second, 𝑑𝑑𝑑𝑑 = 𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑑𝑑 →      𝑑𝑑𝑑𝑑 = (3𝑥𝑥2 − 9)𝑑𝑑𝑑𝑑.  At 𝑥𝑥 = 1,𝑑𝑑𝑑𝑑 = .01, 𝑑𝑑𝑑𝑑 = (3 − 9) ∙ (. 01) = 

              −.06.  So you can see that they are very close, but not identical, which is what we would expect. 

 

EXAMPLE:  

In this example, we will use the differential to perform error approximation.  Let 𝐴𝐴 = 𝜋𝜋𝑟𝑟2 be the 
area of a circular object we are trying to fit within a square frame.  If the area has an error 𝑑𝑑𝑑𝑑 of 
approximately . 7 𝑐𝑐𝑚𝑚2, what is the error in the radius?  Will it fit in our 10 × 10 𝑐𝑐𝑐𝑐 square frame, 
if the radius of our circle is 4.8 𝑐𝑐𝑐𝑐?   

 

𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 →    .7 = 2𝜋𝜋 ∙ 4.8 ∙ 𝑑𝑑𝑑𝑑 →     𝑑𝑑𝑑𝑑 ≈ .0232.  Our circle must have a radius no bigger 
than 5 𝑐𝑐𝑐𝑐, and this one will be no bigger than 4.823, so it will work. 

 

 

  



HYPERBOLIC FUNCTIONS: 

 

Hyperbolic functions are functions that are related to the hyperbola, similar to how trigonometric 
functions are related to the circle. 

DEFINITION: 

sinh𝑥𝑥 = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

2
  (Note: We pronounce this as hyperbolic sine). 

cosh 𝑥𝑥 = (𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)
2

 

tanh𝑥𝑥 =
sinh𝑥𝑥

cosh 𝑥𝑥  
 

csch 𝑥𝑥 =
1

sinh𝑥𝑥
 

sech 𝑥𝑥 =
1

cosh 𝑥𝑥
 

coth 𝑥𝑥 =
cosh 𝑥𝑥
sinh𝑥𝑥

 

 

There are identities for these functions that are left as an exercise for the student. 

Derivatives of Hyperbolic Functions: 

Let us prove the first one:  𝑑𝑑(sinh𝑥𝑥) = cosh 𝑥𝑥: 

 sinh𝑥𝑥 = 𝑒𝑒𝑥𝑥−𝑒𝑒−𝑥𝑥

2
→      𝑑𝑑(sinh𝑥𝑥) = (𝑒𝑒𝑥𝑥+𝑒𝑒−𝑥𝑥)

2
.     We immediately recognize this as cosh 𝑥𝑥.  The others 

can be proved similarly (and just as easily). 

 

EXAMPLE:   

Let 𝑓𝑓(𝑥𝑥) = sinh 3𝑥𝑥2 .  We use the Chain Rule:  𝑓𝑓′(𝑥𝑥) = (cosh 3𝑥𝑥2) ∙6𝑥𝑥 = 6𝑥𝑥 ∙ cosh 3𝑥𝑥2 . 



EXERCISES: 

Find the Linear approximation for the following functions at the given value for 𝑥𝑥: 

 
1) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 2𝑥𝑥2 , 𝑥𝑥 = 0 

 
2) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 + tan2 𝑥𝑥,   𝑥𝑥 = 0 
 

3) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥3 − 𝑥𝑥
1
3,    𝑥𝑥 = 1 

 
4) Find the Linear approximation for 𝑓𝑓(𝑥𝑥) = √𝑥𝑥 + 1  for 𝑎𝑎 = 3, and use it to approximate 

√4.01. 
 

Find the differential: 

 
5) 𝑦𝑦 = sin2 𝑥𝑥 cos 𝑥𝑥 

 
6) 𝑦𝑦 = 𝑥𝑥𝑒𝑒𝑥𝑥 − √𝑥𝑥2 − 1 
 
7) 𝑦𝑦 = ln(𝑥𝑥2) − tan−1 𝑥𝑥 
 

8) 𝑦𝑦 = 𝑥𝑥4−𝑒𝑒2𝑥𝑥

cos2 𝑥𝑥−2𝑥𝑥
 

 
9) 𝑦𝑦 = ln (cos 𝑥𝑥 ∙ tan𝑥𝑥) 
 

10) 𝑦𝑦 = 20𝑥𝑥3−cosh𝑥𝑥
𝑥𝑥5−cos3 𝑥𝑥

  

 

Find the differential, 𝑑𝑑𝑑𝑑, for the given values of 𝑥𝑥 and 𝑑𝑑𝑑𝑑: 

 
11) 𝑦𝑦 = 3𝑥𝑥2 − 6𝑥𝑥,   𝑥𝑥 = 2, 𝑑𝑑𝑑𝑑 = 0.1 

 
12) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 − 9𝑥𝑥,   𝑥𝑥 = 0, 𝑑𝑑𝑑𝑑 = −0.2 
 
13) 𝑦𝑦 = sin𝜋𝜋𝜋𝜋,   𝑥𝑥 = 1

2
,   𝑑𝑑𝑑𝑑 = 0.01 

 
14) 𝑦𝑦 = tan2 𝜋𝜋𝜋𝜋,   𝑥𝑥 = 1,   𝑑𝑑𝑑𝑑 = 0.03 
 

Compare Δ𝑦𝑦 and 𝑑𝑑𝑑𝑑 for the following functions at the given values for 𝑥𝑥 and Δ𝑥𝑥 = 𝑑𝑑𝑑𝑑: (For 15) and 16)): 

 



15) 𝑦𝑦 = 𝑥𝑥3 − 2, 𝑥𝑥 = 3, Δ𝑥𝑥 = 0.1 
 

16) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 + 1, 𝑥𝑥 = 0, Δ𝑥𝑥 = 0.2 
 
17) A circular disk has a radius of 3 cm, and a possible error of 0.02 𝑐𝑐𝑐𝑐.  Use differentials to 

estimate the maximum error in its Area. 

 

18) A sphere has a radius of 6 cm, and a possible error of 0.05 𝑐𝑐𝑐𝑐.  Use differentials to estimate 
the maximum error in its Volume. 

 
 
19) A cube with sides 5 cm, has a possible error of 0.1 cm.  Use differentials to estimate the 

maximum error in its Surface Area. 

  



CHAPTER 3 
SECTION 1 

MAXIMUM AND MINIMUM VALUES (EXTREMA) 
 

We now venture into the territory of what derivatives can be used for.  We have previously seen some 
examples with velocity and acceleration, as well as related rates.  We will now use derivatives to find 
maxima and minima (generalized as extrema) of functions. 
 
We will first discuss the absolute maximum, and absolute minimum of a function over a closed interval.  
Loosely speaking, the absolute maximum will be the highest point on the graph over the interval, and 
the absolute minimum will be the lowest point over the interval.  For a continuous function, we will be 
guaranteed at least one of each (some functions may have one, or both extrema, that occur more than 
once). 
 
DEFINITION:   

Let 𝑓𝑓 be a function defined on an interval 𝐼𝐼 containing the number 𝑐𝑐. 

1) 𝑓𝑓(𝑐𝑐) is the absolute minimum of 𝑓𝑓 on 𝐼𝐼 if 𝑓𝑓(𝑐𝑐) ≤ 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 in 𝐼𝐼. 
 

2) 𝑓𝑓(𝑐𝑐) is the absolute maximum of 𝑓𝑓 on 𝐼𝐼 if 𝑓𝑓(𝑐𝑐) ≥ 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 in 𝐼𝐼. 
 

EXTREME VALUE THEOREM:  This is the Theorem that guarantees at least one of each, over a closed 
interval for a continuous function (as mentioned above): 

Let 𝑓𝑓 be a continuous function on a closed interval [𝑎𝑎, 𝑏𝑏], then 𝑓𝑓 is guaranteed an absolute maximum 
value 𝑓𝑓(𝑐𝑐) and an absolute minimum value 𝑓𝑓(𝑑𝑑) for some numbers 𝑐𝑐 and 𝑑𝑑, that are both in [𝑎𝑎, 𝑏𝑏]. 

 

DEFINITION:  Of local (or relative) extrema. 

(Note:  Some texts use local, and others use relative.  They are interchangeable). 

The number 𝑓𝑓(𝑐𝑐) is: 

1) A local maximum of 𝑓𝑓 if 𝑓𝑓(𝑐𝑐) ≥ 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 is near 𝑐𝑐.  (i.e., it is a natural high spot, or like a 

hill).   
 

2) A local minimum of 𝑓𝑓 if 𝑓𝑓(𝑐𝑐) ≤ 𝑓𝑓(𝑥𝑥) when 𝑥𝑥 is near 𝑐𝑐.  (i.e., it is a natural low spot, or like a 

valley).   
 

Note:  The term “near 𝑐𝑐”, means there exists an interval containing 𝑐𝑐 for which it holds. 



 

DEFINITION: 

A critical number of a function 𝑓𝑓 is a number 𝑐𝑐 in the domain of 𝑓𝑓 such that 𝑓𝑓′(𝑐𝑐) = 0 or 𝑓𝑓′(𝑐𝑐) does not 
exist. (This implies critical numbers are values at which the tangent line is horizontal, or there is no 
tangent line at that value). 

 Example 1:  

This one has a critical number at the bottom of the parabola.  We can easily see that 𝑓𝑓′(𝑐𝑐) = 0 here.  (It 
has a horizontal tangent line). 

 

Example 2:   

This one has a critical number at the top.  We see here that 𝑓𝑓′(𝑐𝑐) does not exist.  (We see we cannot get 
a tangent line at a sharp corner, which we have discussed previously). 

 

FERMAT’S THEOREM:  If 𝑓𝑓 has a local maximum or minimum value at 𝑐𝑐, then 𝑐𝑐 is a critical number of 𝑓𝑓, 
i.e. 𝑓𝑓′(𝑐𝑐) = 0 or 𝑓𝑓′(𝑐𝑐) does not exist.  

PROOF:   

1) Let 𝑓𝑓(𝑐𝑐) be a local extremum and 𝑓𝑓′(𝑐𝑐) does not exist.  Then by definition, it is a critical number. 
 

2) Let 𝑓𝑓(𝑐𝑐) be a local extremum and 𝑓𝑓′(𝑐𝑐) does exist.  Then 𝑓𝑓′(𝑐𝑐) < 0,   𝑓𝑓′(𝑐𝑐) > 0, or 𝑓𝑓′(𝑐𝑐) = 0. 
 

Suppose   𝑓𝑓′(𝑐𝑐) > 0, then there exists a 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏)  such that 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑐𝑐)
𝑥𝑥−𝑐𝑐

> 0 for all 𝑥𝑥 ≠ 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏).  

Because 𝑓𝑓(𝑥𝑥)−𝑓𝑓(𝑐𝑐)
𝑥𝑥−𝑐𝑐

> 0, both numerator and denominator must both be positive or must both be 
negative. 
 
Then, as 𝑥𝑥 → 𝑐𝑐− →    𝑥𝑥 < 𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑥𝑥) < 𝑓𝑓(𝑐𝑐) →  𝑓𝑓(𝑐𝑐) is not a relative minimum. 
And, as 𝑥𝑥 → 𝑐𝑐+ →    𝑥𝑥 > 𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑐𝑐) →  𝑓𝑓(𝑐𝑐) is not a relative maximum. 
 
The only other alternative that works is for 𝑓𝑓′(𝑐𝑐) = 0. 
 
The case that 𝑓𝑓′(𝑐𝑐) < 0 can be proved similarly. 
 
Note:  It is important to note that Fermat’s Theorem is a “one-way” theorem.  What does that 
mean?  It means that it is if-then, not if-and-only-if.  I.e., If 𝒇𝒇 has a local extremum, then it is a 
critical number.  It may not go the other way.  I.e., if 𝒇𝒇 has a critical number at 𝒄𝒄, it may not be 
a local extremum. 



 
 

Example:   
 
Note in this example, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 has a critical number at 𝑥𝑥 = 0, where the slope of the tangent 
line is horizontal.  Also note that it is simply a flat spot on the graph, and neither a local 
maximum or minimum. 
 
 

EXAMPLE:   
 
Find the critical numbers for the following functions: 
 

1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 − 9:  First we find 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 6𝑥𝑥.  Next, we set 𝑓𝑓′(𝑥𝑥) = 0 →   
3𝑥𝑥2 − 6𝑥𝑥 = 0 →    3𝑥𝑥(𝑥𝑥 − 2) = 0 →    𝑥𝑥 = 0   or 𝑥𝑥 = 2.  These are our critical numbers. 
 

2) 𝑓𝑓(𝜃𝜃) = cos 𝜃𝜃 + 𝜃𝜃.   𝑓𝑓′(𝜃𝜃) = − sin𝜃𝜃 + 1 = 0 →   sin𝜃𝜃 = 1 →    𝜃𝜃 = 𝜋𝜋
2

+ 2𝑛𝑛𝑛𝑛, where 𝑛𝑛 =
0,1,2, … 
 
 
 
 

STEPS FOR FINDING THE ABSOLUTE EXTREMA ON A CLOSED INTERVAL: 
 

1) Take the first derivative of 𝑓𝑓. 
2) Find all critical numbers such that 𝑓𝑓′(𝑥𝑥) = 0. 
3) Find all critical numbers such that 𝑓𝑓′(𝑥𝑥) does not exist. 
4) Substitute all critical numbers that are in (a,b), and the 2 endpoints of [a,b] into 𝑓𝑓(𝑥𝑥).  Note:  If 

you get values outside the interval [a,b], you must discard them as they do not apply. 
a) The largest value is the Absolute Maximum. 
b) The smallest value is the Absolute Minimum.  

Note:  It is possible and viable to have more than one of each, i.e., the same value for 𝑓𝑓 
occurring at more than one value for 𝑥𝑥. 



 

Example:  Look again at the graph of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 .  Note that over the closed interval [−5,5], it has no 
critical values, but it has an absolute minimum at 𝑥𝑥 = −5,  and an absolute maximum at 𝑥𝑥 = 5.  We 
know that the Extreme Value Theorem guarantees at least one of each, and in this example, we clearly 
see they both occur at endpoints.  We observe that endpoints, as well as critical numbers are candidates 
for absolute extrema. 

 

 

EXAMPLE:  Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 over the closed interval [-1,2]. 

1) 𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 
 

2) 𝑓𝑓′(𝑥𝑥) = 0 →    2𝑥𝑥 = 0 →    𝑥𝑥 = 0 
 

3) There no values for which 𝑓𝑓′(𝑥𝑥) does not exist. 
 

4) 𝑓𝑓(−1) = 1 
 
𝑓𝑓(0) = 0 
 
𝑓𝑓(2) = 4 
 
We see that the absolute minimum is 𝑓𝑓(0) = 0, and the absolute maximum is 𝑓𝑓(2) = 4. 
 
 

EXAMPLE:  Let us find the Absolute Maximum and Absolute Minimum for the function we looked at 
previously:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 − 9.  Let us confine it to the closed interval [-1,1]. 
 

1) We found 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 6𝑥𝑥 
 

2) 𝑓𝑓′(𝑥𝑥) = 0 →   3𝑥𝑥2 − 6𝑥𝑥 = 0 →    3𝑥𝑥(𝑥𝑥 − 2) = 0 →    𝑥𝑥 = 0   or 𝑥𝑥 = 2. 
 

3) There no values for which 𝑓𝑓′(𝑥𝑥) does not exist. 



 
4) 𝑓𝑓(−1) = −13 

 
𝑓𝑓(0) = −9 
 
𝑓𝑓(2) = −13 
 

5) We note that the absolute minimum is both  𝑓𝑓(−1) = −13 and  𝑓𝑓(2) = −13, and the absolute 
maximum is (0) = −9. 
We also observe that we discarded 𝑥𝑥 = 2, as it is outside the interval [-1,1]. 
 
 

EXAMPLE:  Let us find the Absolute Maximum and Absolute Minimum for the function we looked at 
previously:  𝑓𝑓(𝜃𝜃) = cos θ+𝜃𝜃.  Let us confine it to the closed interval [0,𝜋𝜋]. 
 

1) We found 𝑓𝑓′(𝜃𝜃) = − sin θ+1 
 

2) 𝑓𝑓′(𝜃𝜃) = − sin θ+1 = 0 →   sin  𝜃𝜃 = 1 →   𝜃𝜃 = 𝜋𝜋
2

 
 

3) There no values for which 𝑓𝑓′(𝜃𝜃) does not exist. 
 

4) 𝑓𝑓(0) = 1 
 

𝑓𝑓 �
𝜋𝜋
2
� =

𝜋𝜋
2

 

𝑓𝑓(𝜋𝜋) = −1 + 𝜋𝜋 

 

5) We note that 𝑓𝑓(0) = 1 is the absolute minimum, and (𝜋𝜋) = −1 + 𝜋𝜋 is the absolute maximum. 

 

EXAMPLE:  Find the Absolute Maximum and the Absolute Minimum for 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2+1

  

over the interval [-1,2]: 
 

1) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2+1

= (𝑥𝑥2 + 1)−1 →     𝑓𝑓′(𝑥𝑥) = −(𝑥𝑥2 + 1)−2 ∙ 2𝑥𝑥 = − 2𝑥𝑥
(𝑥𝑥2+1)2 

 

2) 𝑓𝑓′(𝑥𝑥) = 0 →    − 2𝑥𝑥
(𝑥𝑥2+1)2 = 0 →    2𝑥𝑥 = 0 →    𝑥𝑥 = 0 

 
3) There no values for which 𝑓𝑓′(𝑥𝑥) does not exist.  (Note: there are no real numbers for which 

(𝑥𝑥2 + 1)2 = 0. 
 

4) 𝑓𝑓(−1) = 1
2
 



 
𝑓𝑓(0) = 1 
 

𝑓𝑓(2) =
1
5

 

 

5) We note that 𝑓𝑓(2) = 1
5
 is the absolute minimum, and 𝑓𝑓(0) = 1 is the absolute maximum. 

 
 

EXAMPLE:  Find the Absolute Maximum and the Absolute Minimum for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2
3  

over the interval [-8,1]: 
 

1) 𝑓𝑓′(𝑥𝑥) = 2
3
𝑥𝑥−

1
3 = 2

3𝑥𝑥
1
3
 

 

2) 𝑓𝑓′(𝑥𝑥) = 0 →   2

3𝑥𝑥
1
3

= 0 →    1 = 0.  So we see there are no solutions to this equation.  This 

implies that there are no places on the graph such that the tangent line is horizontal.    
 

3) This time we observe there is a number for which 𝑓𝑓′(𝑥𝑥) does not exist.  We see that when  
𝑥𝑥 = 0, that 𝑓𝑓′(𝑥𝑥) is undefined, and therefore, does not exist.  (We also observe that 𝑓𝑓(0) does 
exist.  If it did not, then 𝑥𝑥 = 0 would not be a critical number as would not be in the domain of 
𝑓𝑓). 
 

4) 𝑓𝑓(−8) = 4 
 

𝑓𝑓(0) = 0 
 
𝑓𝑓(1) = 1 
 

5) We observe that 𝑓𝑓(−8) = 4  is the absolute maximum, and 𝑓𝑓(0) = 0 is the absolute mimimum. 
 

 
 
  



EXERCISES: 

Find all critical numbers for the following functions: 

 
1) 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 − 12 

 
2) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 12𝑥𝑥 − 20 
 
3) 𝑦𝑦 = 3𝑥𝑥3 − 27𝑥𝑥2 
 
4) 𝑦𝑦 = 1

3
𝑥𝑥3 − 5

2
𝑥𝑥2 + 6𝑥𝑥 

 
5) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 − 𝑥𝑥 
 
6) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 − 𝑥𝑥 
 
7) 𝑓𝑓(𝑡𝑡) = 14𝑡𝑡 − 2 
 
8) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥+1

𝑥𝑥2+1
 

 
9) 𝑦𝑦 = tan2 𝑥𝑥 
 
10) 𝑦𝑦 = ln(2𝑥𝑥) − 2𝑥𝑥2 
 

Find the Absolute Maximum and the Absolute Minimum for the following functions over the given 
interval: 

  
11) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 20,   [-2,2] 

 
12) 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2 − 2𝑥𝑥 + 7, [−1,1] 
 
13) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 5𝑥𝑥 − 17, [0,2] 
 
14) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 − 2, [−1,4] 
 
15) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 + 3𝑥𝑥 + 1, [−2,2] 
 
16) 𝑓𝑓(𝑥𝑥) = 1

3
𝑥𝑥3 − 2𝑥𝑥 + 5, [−1,3] 

 
17) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 9𝑥𝑥 − 2, [−4,1] 
 
18) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 2𝑥𝑥2 , [0,1] 



 
19) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 3𝑥𝑥3 , [−1,4] 

 
20) 𝑓𝑓(𝑥𝑥) = 2 cos 𝑥𝑥 , [0,2π]: 
 
21) 𝑓𝑓(𝜃𝜃) = 2 cos θ−𝜃𝜃,   [0,𝜋𝜋] 
 
22) 𝑓𝑓(𝜃𝜃) = 2 sin θ+√3𝜃𝜃,   [0,2𝜋𝜋] 
 
23) 𝑓𝑓(𝑥𝑥) = 2

𝑥𝑥2+2
, [−2,3] 

 
24) 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥4+1
, [−1,1] 

 

25) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)
2
3, [−2,2] 

 

26) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)
2
3, [0,3] 

 

27) 𝑓𝑓(𝑥𝑥) = −3(𝑥𝑥 − 1)
2
3 + 2, [0,2] 

 
28) 𝑓𝑓(𝑡𝑡) = 𝑒𝑒𝑡𝑡 − 𝑡𝑡, [−1,1] 

 

  



CHAPTER 3 
SECTION 2 

THE MEAN VALUE THEOREM 
 

The idea behind the Mean Value Theorem is super cool!  Recall from Chapter 1, Section 6, we 
introduced the idea of instantaneous rates of change, and we talked about a skier skiing down a 
mountain.  We introduced the derivative, at this time, as an instantaneous rate of change (the slope of 

the tangent line). We discussed the difference between an average speed �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�, vs an 
instantaneous speed at a particular point in time.  If you are a skier, do you think your average speed will 
always be the same as your instantaneous speed?  Most likely not.  As the terrain changes, you will 
speed up and slow down accordingly.  You may have to stop to avoid someone.  You may speed up to 
get out of the way to avoid someone else.  It would be very unlikely that you would always be skiing at a 
constant speed.  What the Mean Value Theorem gives us, is that if you can model your distance vs time 
as a continuous  and differentiable function, then at least once, your instantaneous speed will equal 
your average speed.  (This applies to other rates of change as well). 
 
We will prove the Mean Value Theorem, but before we can do that, we must prove a smaller theorem 
called Rolle’s Theorem. 
 
ROLLE’S THEOREM: 
 
Let 𝑓𝑓 be a function that satisfies the following: 
 

1) 𝑓𝑓 is continuous on the closed interval [𝑎𝑎, 𝑏𝑏]. 
2) 𝑓𝑓 is differentialbe on the open interval (𝑎𝑎, 𝑏𝑏). 
3) 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏) 

Then there exists a number 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏) such that 𝑓𝑓′(𝑐𝑐) = 0. 

 

PROOF: 

We will prove this with 3 cases:  

1) 𝑓𝑓(𝑥𝑥) = 𝑘𝑘, a constant.  In this case 𝑓𝑓′(𝑥𝑥) = 0 everywhere, so 𝑐𝑐 is any number in (𝑎𝑎, 𝑏𝑏). 
 

 
2) 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑎𝑎) for some 𝑥𝑥 𝑖𝑖𝑖𝑖 (𝑎𝑎, 𝑏𝑏).  By the Extreme Value Theorem, 𝑓𝑓(𝑥𝑥) has an absolute 

maximum in [𝑎𝑎, 𝑏𝑏].  Since 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏), it must occur within (𝑎𝑎, 𝑏𝑏), and not at the endpoints.  
Therefore, 𝑓𝑓 has a local maximum at 𝑐𝑐, and 𝑓𝑓′(𝑐𝑐) = 0 by Fermat’s Theorem. 



 

 
3) Similarly to the above argument, if 𝑓𝑓(𝑥𝑥) < 𝑓𝑓(𝑎𝑎), for some value 𝑥𝑥 𝑖𝑖𝑖𝑖 (𝑎𝑎, 𝑏𝑏), 𝑓𝑓 has a local 

minimum in (𝑎𝑎, 𝑏𝑏), and 𝑓𝑓′(𝑐𝑐) = 0 by Fermat’s Theorem, using the same argument in 2). 
 

 

 

EXAMPLE: 

Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1,   [−2,2].  We will use Rolle’s Theorem to find all numbers 𝑐𝑐 that satisfy the 
conclusion of Rolle’s Theorem.  We start by showing this function satisfies the 3 conditions of Rolle’s 
Theorem: 

1)  𝑓𝑓 is continuous on [−2,2].  True, polynomials are continuous everywhere. 
2) 𝑓𝑓 is differentiable on (−2,2).  True, polynomials are differentiable everywhere. 
3) 𝑓𝑓(−2) = 5, 𝑓𝑓(2) = 5.  This condition holds true. 

Then, there exists a 𝑐𝑐 such that 𝑓𝑓′(𝑐𝑐) = 0 in (𝑎𝑎, 𝑏𝑏).  𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 = 0 →    𝑥𝑥 = 0.  0 is in the open interval 
(−2,2).  This is only value for 𝑐𝑐 that we obtain. 

 

 

THE MEAN VALUE THEOREM: 

Let 𝑓𝑓 be a function that satisfies the following conditions: 

1) 𝑓𝑓 is continuous on the closed interval [𝑎𝑎, 𝑏𝑏]. 
2) 𝑓𝑓 is differentialbe on the open interval (𝑎𝑎, 𝑏𝑏). 

 

Then there exists a number 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏) such that 𝑓𝑓′(𝑐𝑐) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

.  Note that 𝑓𝑓′(𝑐𝑐) is our derivative, our 

instantaneous rate of change, and that 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

 is our average rate of change.  We observe that it is 

exactly what we talked about in our ski example. 



 

 

PROOF: 

To prove the Mean Value Theorem, we will have to use Rolle’s Theorem in our proof. 

Let us first write our the equation of a secant line at a point from 𝑥𝑥 = 𝑎𝑎 to 𝑥𝑥 = 𝑏𝑏.   

𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

(𝑥𝑥 − 𝑎𝑎).  Or solving for 𝑦𝑦:  𝑦𝑦 = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

(𝑥𝑥 − 𝑎𝑎). 

The next thing we will do is create a new function ℎ(𝑥𝑥).  THIS IS A TRICK:  We define ℎ(𝑥𝑥) to be the 
difference between 𝑓𝑓(𝑥𝑥) and the secant line function we expressed above: 

ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − �𝑓𝑓(𝑎𝑎) +
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
(𝑥𝑥 − 𝑎𝑎)� →   ℎ(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑎𝑎) −

𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

(𝑥𝑥 − 𝑎𝑎)   

Next we will use Rolle’s Theorem:  To do that, we must first verify it meets all 3 conditions: 

1) ℎ(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏], since 𝑓𝑓 is continuous (as stated in the first condition for the Mean 

Value Theorem, and 𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

(𝑥𝑥 − 𝑎𝑎), is the equation of a line, which is continuous 
everywhere. 
 

2) ℎ(𝑥𝑥) is differentiable on (𝑎𝑎, 𝑏𝑏), since 𝑓𝑓 is differentiable (as stated in the second condition for the 

Mean Value Theorem, and 𝑦𝑦 − 𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

(𝑥𝑥 − 𝑎𝑎), is the equation of a line (not vertical), 
which is differentiable everywhere. 
   

3) We must now show that ℎ(𝑎𝑎) = ℎ(𝑏𝑏).   ℎ(𝑎𝑎) = 𝑓𝑓(𝑎𝑎) − 𝑓𝑓(𝑎𝑎) − 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

(𝑎𝑎 − 𝑎𝑎) = 0− 0 = 0. 
 

ℎ(𝑏𝑏) = 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) −
𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
(𝑏𝑏 − 𝑎𝑎) = 𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎) − �𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)� = 0.  

We can clearly see that Rolle’s Theorem is satisfied:  Therefore, there exists a number 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏) such 
that ℎ′(𝑐𝑐) = 0. 

ℎ′(𝑥𝑥) = 𝑓𝑓′(𝑥𝑥) − 0− 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

∙ 1 = 0 →     ℎ′(𝑐𝑐) = 𝑓𝑓′(𝑐𝑐) − 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

= 0 →     𝑓𝑓′(𝑐𝑐) = 𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

. 



(Note that the derivative of 𝑓𝑓(𝑎𝑎) is 0, because it is a constant, and the derivative of 𝑥𝑥 − 𝑎𝑎 is 1, because 𝑎𝑎 
is a constant). 

 

EXAMPLE: 

Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 12𝑥𝑥, [−1,2]. 

𝑓𝑓(𝑥𝑥) is continuous on [−1,2], and differentiable on (−1,2), since it is a polynomial and both continuous 
and differentiable everywhere. 

Therefore, the Mean Value Theorem applies and there exists a number 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏) such that 𝑓𝑓′(𝑐𝑐) =
𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)

𝑏𝑏−𝑎𝑎
.   Let us find all values 𝑐𝑐, for which this holds. 

𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 12.  𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)
𝑏𝑏−𝑎𝑎

= 𝑓𝑓(2)−𝑓𝑓(−1)
2−(−1) = −16−11

2+1
= 27

3
= 9.   𝑓𝑓′(𝑐𝑐) = 3𝑐𝑐2 − 12 = 9 →    𝑐𝑐2 = 21

3
= 7.   

Therefore 𝑐𝑐 = ±√7.  We found two values that work!   

 

EXAMPLE: 

You are skiing down a mountain with an average speed of 30 mph.  Your distance vs time is modeled by 
the function 𝑓𝑓(𝑡𝑡) = 1

3
𝑡𝑡3 − 7

2
𝑡𝑡.  You skied for 5 minutes.  How many minutes after you began your 

descent , did you go 30 mph?   

First, we must convert 30 mph to miles/minute.  We get 1/2 miles/minute, or .5 miles/minute.  We 
observe that 𝑓𝑓(𝑡𝑡) is a polynomial, and therefore, continuous on [0,5], and differentiable on (0,5). 

𝑓𝑓′(𝑡𝑡) = 𝑡𝑡2 − 7
2
.  So 𝑓𝑓′(𝑐𝑐) = 𝑐𝑐2 − 7

2
.  We also know that .  𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)

𝑏𝑏−𝑎𝑎
= 1

2
  in miles per minute.  So 

 𝑐𝑐2 − 7
2

= 1
2
→      𝑐𝑐2 = 4 →     𝑐𝑐 = ±2.  Of course time cannot be negative, so the only time during our 

run that we skied 30 mph was at 𝑡𝑡 = 2 minutes after the beginning of our descent. 

 

We get some other results from the Mean Value Theorem as well.  One is the following theorem: 

 

THEOREM:   

If 𝑓𝑓′(𝑥𝑥) = 0 for all 𝑥𝑥 in an open interval 𝐼𝐼 = (𝑎𝑎, 𝑏𝑏), then 𝑓𝑓(𝑥𝑥) is constant on 𝐼𝐼. 

This makes intuitive sense, since 𝑓𝑓′(𝑥𝑥) is the slope of the tangent line.  If 𝑓𝑓′(𝑥𝑥) = 0, the slope of the 
tangent line is horizontal on all of 𝐼𝐼.  Therefore, 𝑓𝑓(𝑥𝑥) would be constant.  But, we can also use the Mean 
Value Theorem to prove it: 

 



PROOF: 

Let 𝑥𝑥1, 𝑥𝑥2 be any two numbers in 𝐼𝐼.  Also let 𝑥𝑥1 < 𝑥𝑥2.  Since we are using the Mean Value Theorem, 𝑓𝑓 is 
continuous on [𝑎𝑎, 𝑏𝑏], and differentiable on (𝑎𝑎, 𝑏𝑏).  Therefore, 𝑓𝑓 will be continuous on [𝑥𝑥1, 𝑥𝑥2], and 
differentiable on (𝑥𝑥1 , 𝑥𝑥2), since 𝑥𝑥1, 𝑥𝑥2 are both in 𝐼𝐼 = (𝑎𝑎, 𝑏𝑏).  Therefore, the Mean Value Theorem 
applies:  Therefore, we have a number 𝑐𝑐 such that 𝑥𝑥1 < 𝑐𝑐 < 𝑥𝑥2 such that: 

𝑓𝑓′(𝑐𝑐) = 𝑓𝑓(𝑥𝑥2)−𝑓𝑓(𝑥𝑥1)
𝑥𝑥2−𝑥𝑥1

→       𝑓𝑓(𝑥𝑥2) − 𝑓𝑓(𝑥𝑥1) = 𝑓𝑓′(𝑐𝑐)(𝑥𝑥2 − 𝑥𝑥1).   Since, 𝑓𝑓′(𝑥𝑥) = 0, for all 𝑥𝑥 in 𝐼𝐼, then 

𝑓𝑓′(𝑐𝑐) = 0, and then 𝑓𝑓(𝑥𝑥2) − 𝑓𝑓(𝑥𝑥1) = 0 →     𝑓𝑓(𝑥𝑥2) = 𝑓𝑓(𝑥𝑥1).  Therefore, 𝑓𝑓 is constant on 𝐼𝐼. 

 

COROLLARY: 

If 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) for all 𝑥𝑥 in 𝐼𝐼, then 𝑓𝑓 − 𝑔𝑔 is constant on 𝐼𝐼.  This implies, 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) + 𝑐𝑐, where 𝑐𝑐 is a 
constant.  



EXERCISES: 

 

Sketch the graph of the following functions over the given interval.  Sketch the slope of the secant line 
over the interval, then sketch the tangent lines with the same slope as the secant line:  (You can use a 
graphing calculator if needed). 

 
1) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 4, [−1,3] 

 
2) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 2𝑥𝑥2 + 9, [-3,4] 
 
3) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 , [0,5] 

 

4) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥,   �0, 3𝜋𝜋
2
� 

 

Verify that the function satisfies the 3 conditions for Rolle’s Theorem over the given interval.  Then find 
all values 𝑐𝑐 that satisfy its conclusion. 

 
5) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 9, [−2,2] 

 
6) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 𝑥𝑥2 , [−1,0] 
 
7) 𝑓𝑓(𝑥𝑥) = sin 2𝑥𝑥,   [0,𝜋𝜋] 
 
8) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥2 ,   [−1,1] 
 

Verify that the function satisfies the 2 conditions for the Mean Value Theorem over the given interval.  
Then find all values 𝑐𝑐 that satisfy its conclusion: 

 
9) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥 − 3,   [0,1] 

 
10) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 4,   [−1,1] 
 
11) 𝑓𝑓(𝑥𝑥) = 3 ln 2𝑥𝑥,   [1,2] 
 
12) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥,   [0,𝜋𝜋] 
 
13) You are skiing down a mountain with an average speed of 20 mph.  Your distance vs time is 

modeled by the function 𝑓𝑓(𝑡𝑡) = 1
3
𝑡𝑡3 − 7

3
𝑡𝑡.  You skied for 8 minutes.  .  How many minutes 

after you began your descent, did you go 20 mph?   
 



14) You are on a road trip.  You drove for 5 hours today.  Your average speed was 60 mph.  Your 
distance vs time is modeled by the function 𝑓𝑓(𝑡𝑡) = 𝑡𝑡4 − 8𝑡𝑡.  How many minutes after you 
began your road trip, did you go 60 mph?   

 
 

15) You are traveling in a car.  You travel for 90 miles in 2 hours.  Prove that your speed was 45 
mph at least once.  (Your model function is continuous and differentiable everywhere). 

 
16) You are running a foot race.  At 𝑡𝑡 = 10 minutes into the race, your speed is 10 mph.  At 𝑡𝑡 =

30 minutes in, your speed is 15 mph.  Show that at some time during the race, your 
acceleration is 1

4
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
ℎ𝑜𝑜𝑜𝑜𝑟𝑟2

 . 

 

  



CHAPTER 3 
SECTION 3 

HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH 
 

Derivatives affect the shape of a graph in many ways.  “First Derivatives” show you where the function is 
increasing, where it is decreasing, and where it has a local maximum and/or local minimum (which we 
discovered in Section 1 of this chapter).  “Second Derivatives” show you where the function is concave 
up or down (which we will define in this section, but it basically refers to where a curve opens up or 
down); along with inflection points, where the function changes concavity. 
 
This section leads us into how to sketch curves using derivatives (a great application of derivatives, as 
graphs model real-world ideas), and will further lead us into applications referred to as optimization. 
 
At this point in our journey, we should be getting excited about what lies ahead, and how Calculus 
shapes our daily lives and the world around us. 
 
We will begin this section by defining Increasing and Decreasing functions. 
 
DEFINITION: 
 

1) A function 𝑓𝑓 is said to be increasing over an interval 𝐼𝐼 if for every 𝑎𝑎 and 𝑏𝑏 in 𝐼𝐼, and if 𝑎𝑎 < 𝑏𝑏 then 
𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏).  (In Laymen’s terms this means, as we move from left to right, 𝑓𝑓 gets bigger:  goes 
up). 
 

 
2) A function 𝑓𝑓 is said to be decreasing over an interval 𝐼𝐼 if for every 𝑎𝑎 and 𝑏𝑏 in 𝐼𝐼, and if 𝑎𝑎 < 𝑏𝑏 then 

𝑓𝑓(𝑎𝑎) > 𝑓𝑓(𝑏𝑏).  (In Laymen’s terms this means, as we move from left to right, 𝑓𝑓 gets smaller:  
goes down). 
 

 
 
 

INCREASING/DECREASING TEST/ THEOREM: 
 

Let 𝑓𝑓 be a continuous function on [a,b], and differentiable on (a,b).  Then  



1) If 𝒇𝒇′(𝒙𝒙) > 𝟎𝟎 for all 𝑥𝑥 in (a,b), then 𝑓𝑓 is increasing on [a,b].  Intuitively, this makes sense.  We 
know that the derivative represents the slope of the tangent line, and if the slope of the tangent 
line is positive, the function is increasing. 
 

2) If 𝒇𝒇′(𝒙𝒙) < 𝟎𝟎 for all 𝑥𝑥 in (a,b), then 𝑓𝑓 is decreasing on [a,b].  Intuitively, this also makes sense.  
Again, since the derivative represents the slope of the tangent line, and if the slope of the 
tangent line is negative, it is decreasing. 
 

PROOF:  (OF NUMBER 1) 
 
Let 𝑓𝑓′(𝑥𝑥) > 0 for all 𝑥𝑥 in (a,b), and 𝑥𝑥1 < 𝑥𝑥2 be two values in (a,b).  By the Mean Value Theorem, there 

exists a number 𝑐𝑐 in (𝑥𝑥1, 𝑥𝑥2) such that 𝑓𝑓′(𝑐𝑐) = 𝑓𝑓(𝑥𝑥2)−𝑓𝑓(𝑥𝑥1)
𝑥𝑥2−𝑥𝑥1

.  Since 𝑥𝑥1 < 𝑥𝑥2, then 𝑥𝑥2 − 𝑥𝑥1 is positive, and 

𝑓𝑓′(𝑐𝑐) is also positive (given in our statement), then 𝑓𝑓(𝑥𝑥2) − 𝑓𝑓(𝑥𝑥1) must also be positive.  Therefore, 𝑓𝑓 is 
increasing on [a,b].   
 
Number 2) can be proved similarly. 
 
 
LOCAL EXTREMA: 
 
We discussed local extrema in Section 1 of this chapter.  These are local (or relative) maximum, and local 
(or relative) minimum values.  Recall that they only occurred at critical points (where 𝑓𝑓′(𝑥𝑥) = 0 or 
where 𝑓𝑓′(𝑥𝑥) does not exist (by Fermat’s Theorem)).  We also recall that not every critical point is a local 
extrema (recall the function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 which has a critical number at 𝑥𝑥 = 0. )  Note:  I used the words 
critical points and critical numbers here.  A point is an ordered pair (𝑥𝑥,𝑦𝑦).  A critical number is one value, 
in our case 𝑥𝑥 = 𝑐𝑐, where 𝑐𝑐 is a constant. 
 
So once we find our critical points, how will we determine whether it is a local maximum, a local 
minimum or neither?  We will have two ways.  The first way is to use the first derivative. 
 
THE FIRST DERIVATIVE TEST: 
 
Let 𝑐𝑐 be a critical number of a continuous function 𝑓𝑓 
 

1) If 𝑓𝑓 is increasing before 𝑐𝑐, and decreasing after 𝑐𝑐, (i.e., positive before and negative after), 𝑓𝑓 has 
a local maximum at (𝑐𝑐,𝑓𝑓(𝑐𝑐)). 
 

2) If 𝑓𝑓 is decreasing before 𝑐𝑐, and increasing after 𝑐𝑐, (i.e., negative before and positive after), 𝑓𝑓 has 
a local minimum at (𝑐𝑐,𝑓𝑓(𝑐𝑐)). 
 

3) If 𝑓𝑓 does not change signs at 𝑐𝑐, then (𝑐𝑐,𝑓𝑓(𝑐𝑐)) is not a local maximum or local minimum.  (It will 
merely be a flat spot on the graph like 𝑐𝑐 = 0 for 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3). 
 



EXAMPLE:  

 

Notice this graph has a critical point (𝑐𝑐,𝑓𝑓(𝑐𝑐)) at its center where 𝑓𝑓′(𝑥𝑥) = 0.  Also notice it is increasing 
before 𝑐𝑐 and decreasing after 𝑐𝑐.  Therefore, (𝑐𝑐,𝑓𝑓(𝑐𝑐)) is a local maximum. 

 

EXAMPLE: 

 

Notice this graph has a critical point (𝑐𝑐,𝑓𝑓(𝑐𝑐)) at its center where 𝑓𝑓′(𝑥𝑥) = 0.  Also notice it is decreasing 
before 𝑐𝑐 and increasing after 𝑐𝑐.  Therefore, (𝑐𝑐,𝑓𝑓(𝑐𝑐)) is a local minimum. 

 

EXAMPLE: 

 

Notice this graph has a critical point (𝑐𝑐,𝑓𝑓(𝑐𝑐)) at its center where 𝑓𝑓′(𝑥𝑥) = 0.  Also notice it is increasing 
before 𝑐𝑐 and increasing after 𝑐𝑐.  Therefore, (𝑐𝑐,𝑓𝑓(𝑐𝑐)) is a not a local extrema.  (We see it is a flat spot on 
the graph). 

 

EXAMPLE; 

Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2.  Find all local maximum and minimum values.  𝑓𝑓′(𝑥𝑥) = 0 →    2𝑥𝑥 = 0 →    𝑥𝑥 = 0.  
Since 𝑥𝑥 = 0 is the only critical number of 𝑓𝑓, we can substitute any value on either side to see where it is 
increasing and decreasing. 𝑓𝑓′(−1) = −2, 𝑓𝑓′(1) = 2.  So we see it is decreasing before 𝑥𝑥 = 0, and 
increasing after.  Therefore, (0,−2) is a local minimum value.  (Note:  How did we find the -2?  We 
always use 𝑓𝑓(𝑐𝑐) to find the y-coordinate). 

 

HOW SECOND DERIVATIVES AFFECT THE SHAPE OF A GRAPH: 

Take a look at the graph below: 



 

Notice the blue graph labeled Concave Down.  Also notice the tangent lines drawn on the graph.  Since 
the first derivative shows us where the function is increasing and decreasing, the second derivative 
shows us where the derivative is increasing or decreasing.  Notice on the blue graph, the slopes of the 
tangent lines are always decreasing.  They start out positive, go to zero, and become negative.  
Therefore 𝑓𝑓′′(𝑥𝑥) < 0, since the slopes of the tangent lines are always decreasing. (Note:  Do not confuse 
this for where the function itself is increasing or decreasing.  This time we are observing what the 
derivative itself is doing).   

Similarly, we look at the red graph labeled Concave Up.   Notice on this graph, the slopes of the tangent 
lines are always increasing.  They start out negative, go to zero, and become positive.  Therefore 
𝑓𝑓′′(𝑥𝑥) > 0, since the slopes of the tangent lines are always increasing. 

To remember which is which, we say Concave Up Holds Water, and Concave Down Spills Water. 

 

CONCAVITY TEST: 

1) If 𝑓𝑓′′(𝑥𝑥) > 0 for all 𝑥𝑥 in an interval 𝐼𝐼, then 𝑓𝑓(𝑥𝑥) is concave up over 𝐼𝐼. 
 

2) If 𝑓𝑓′′(𝑥𝑥) < 0 for all 𝑥𝑥 in an interval 𝐼𝐼, then 𝑓𝑓(𝑥𝑥) is concave down over 𝐼𝐼. 
 
 

DEFINITION:   
 
A point (𝑐𝑐, (𝑓𝑓(𝑐𝑐)) is called an Inflection point, if 𝑓𝑓 is continuous at 𝑐𝑐, and 𝑓𝑓 changes concavity at 
(𝑐𝑐, (𝑓𝑓(𝑐𝑐))  (meaning from concave up to concave down, or vice versa). 
 
 
THEOREM:  TO FIND AN INFLECTION POINT: 
 
An inflection point (𝑐𝑐,𝑓𝑓(𝑐𝑐)) will only occur if 𝑓𝑓′′(𝑐𝑐) = 0 or if 𝑓𝑓′′(𝑐𝑐) does not exist.   
 
(Note that this is a one way theorem.  If there is an inflection point, it must satisfy the above conditions; 
but conversely just because  𝑓𝑓′′(𝑐𝑐) = 0 or if 𝑓𝑓′′(𝑐𝑐) does not exist, does not necessarily mean there is an 



inflection point there.  Example:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 .  𝑓𝑓′′(𝑥𝑥) = 12𝑥𝑥2 .    12𝑥𝑥2 = 0 →    𝑥𝑥 = 0.  But 𝑥𝑥 = 0 is not an 

inflection point, as 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4  is concave up everywhere.  
 

 
EXAMPLE: 
 
Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 2.  Let’s find all inflection points, and the intervals of concavity for this function. 
 
First, we must find 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥).   𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 12𝑥𝑥 →    𝑓𝑓′′(𝑥𝑥) = 6𝑥𝑥 − 12.  
 
 Next we find the inflection point(s) by setting 𝑓𝑓′′(𝑥𝑥) = 0.    6𝑥𝑥 − 12 = 0 →     𝑥𝑥 = 2, gives (2,−14) as 
our only possible inflection point.  (Note:  again “point” infers both an x and y coordinate).  This is our 
only inflection point.  (Note there are no cases where 𝑓𝑓′′(𝑥𝑥) does not exist). 
 
So now we need to only choose any number on either side of  𝑥𝑥 = 2, and substitute each into 𝑓𝑓′′(𝑥𝑥).  
We choose 𝑥𝑥 = 0, and 𝑥𝑥 = 3:   𝑓𝑓′′(0) = −12,   𝑓𝑓′′(3) = 6.    
 
Therefore 𝑓𝑓(𝑥𝑥) is concave down from (−∞, 2), and concave up from (2,∞), which gives us (2,−14) as 
our only inflection point. 
 
 
THE SECOND DERIVATIVE TEST: 
 
Recall, previously we mentioned there would be two ways to find out if a critical point was a local 
maximum, a local minimum, or neither.  The first method was using the First Derivative Test to see 
where the function was increasing and decreasing.  The next method will be to use the Second 
Derivative Test to see if a function is a local maximum or a local minimum.  Sometimes this test fails.  In 
this instance, it is necessary to use the First Derivative Test. 
 
It goes as follows: 
 
Let 𝑓𝑓′′ be continuous near 𝑥𝑥 = 𝑐𝑐: 
 

1) If 𝑓𝑓′(𝑐𝑐) = 0, and 𝑓𝑓′′(𝑐𝑐) > 0,𝑓𝑓 has a local minimum at �𝑐𝑐,𝑓𝑓(𝑐𝑐)�. (Note that 𝑓𝑓 is concave up 

here).   
 



2) If 𝑓𝑓′(𝑐𝑐) = 0, and 𝑓𝑓′′(𝑐𝑐) < 0,𝑓𝑓 has a local maximum at �𝑐𝑐,𝑓𝑓(𝑐𝑐)�. (Note that 𝑓𝑓 is concave down 

here).   
 

3) If 𝑓𝑓′(𝑐𝑐) = 0, and 𝑓𝑓′′(𝑐𝑐) = 0, or if 𝑓𝑓′′(𝑐𝑐) does not exist, the test fails.  𝑓𝑓 could be a local 

minimum, a local maximum, or neither.  E.g., it could look like this:   
 

 

EXAMPLE:   Let’s finish our previous example:  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 2.  Let us find: 

a) The intervals for which 𝑓𝑓 is increasing or decreasing 
b) The local maximum and minimum values of 𝑓𝑓 
c) The inflection point(s) and intervals of concavity. 

(Note that we have already found part c). 

a) First we find all critical points:  𝑓𝑓′(𝑥𝑥) = 0 →    3𝑥𝑥2 − 12𝑥𝑥 = 0 →    𝑥𝑥 = 0,4.  So we get (0,2) and 
(4,−30) as our critical points.  We need to substitute values less than 0, between 0 and 4, and 
greater than 4 into the first derivative.  𝑓𝑓′(−1) = 15, 𝑓𝑓′(1) = −9, 𝑓𝑓′(5) = 15.  Therefore 𝑓𝑓 is 
increasing from (−∞, 0) ∪ (4,∞), and decreasing from (0,4). 
 

b) It is easy to see that (0,2) is a local maximum since it was increasing before, and decreasing 
after.  We also observe that from our work in the previous example, that it was concave down 
there. 
 
We also observe that (4,−30) is a local minimum since it was decreasing before, and increasing 
after.  We also observe that from our work in the previous example, that it was concave up 
there. 
 

c) We already found this information in our previous example. 

 

EXAMPLE: 

Let 𝑓𝑓(𝑥𝑥) = 2 sin 2𝑥𝑥  from [0,𝜋𝜋].  Again, let us find: 

a) The intervals for which 𝑓𝑓 is increasing or decreasing 
b) The local maximum and minimum values of 𝑓𝑓 
c) The inflection point(s) and intervals of concavity 



 

a) First we find all critical points:  𝑓𝑓′(𝑥𝑥) = 0 →   4 cos 2𝑥𝑥 = 0 →    𝑥𝑥 = 𝜋𝜋
4

.  So our only critical point 

is �𝜋𝜋
4

, 2�.  So we need only substitute vales on either side of 𝜋𝜋
4

 and inside (0,𝜋𝜋) into 𝑓𝑓′(𝑥𝑥) to find 

where 𝑓𝑓 is increasing or decreasing.  𝑓𝑓′ �𝜋𝜋
6
� = 2,   𝑓𝑓′ �𝜋𝜋

3
� = −2.  Therefore, 𝑓𝑓 is increasing from 

�−∞, 𝜋𝜋
4
� and decreasing from �𝜋𝜋

4
,∞�. 

 

b) Since 𝑓𝑓 is increasing before 𝑥𝑥 = 𝜋𝜋
4

, and decreasing after, �𝜋𝜋
4

, 2� is a local maximum. 
 

c) To find all inflection point(s), we set 𝑓𝑓′′(𝑥𝑥) = 0.  (Note there are no cases where 𝑓𝑓′′(𝑥𝑥) does not 
exist). 
 
  𝑓𝑓′′(𝑥𝑥) = −8 sin 2𝑥𝑥.  − 8 sin 2𝑥𝑥 = 0 →    𝑥𝑥 = 0, 𝜋𝜋

2
.  Since 0 is an endpoint, it is not considered 

an inflection point on our interval, since it is not in our selected domain.  Therefore, we only 
consider 𝑥𝑥 = 𝜋𝜋

2
.  Next, we need to substitute values on either side of 𝜋𝜋

2
 and inside  (0, 𝜋𝜋) into 

𝑓𝑓′′(𝑥𝑥) to see where 𝑓𝑓 is concave up or concave down. 

  𝑓𝑓′′ �𝜋𝜋
4
� = −8,    𝑓𝑓′′ �3𝜋𝜋

4
� = 8.  Therefore, we conclude that 𝑓𝑓 is concave down from �−∞, 𝜋𝜋

2
�, 

and concave up from �𝜋𝜋
2

,∞�. 
 
 

EXAMPLE: 
 
Let us now construct a graph given certain conditions of derivatives.  (Note that a graph that meets the 
conditions given is not necessarily unique).  There may be an infinite number of possibilities.  We only 
need to construct a graph that meets the given conditions.  Any number of graphs may be different. 
 
Let us sketch a graph that has 𝑓𝑓 is decreasing and concave up on (−∞, 1) and decreasing and concave 
down on (1,∞). 
 

 
 
Note how this graph satisfies all conditions given.  Also notice it is not unique. 
 
 
EXAMPLE: 



 
For the functions given, find the following: 
 

a) The intervals for which 𝑓𝑓 is increasing or decreasing 
b) The local maximum and minimum values of 𝑓𝑓 
c) The inflection point(s) and intervals of concavity 
d) Use steps a)-c) to sketch the graph of the function: 

 

1)  𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 2.  We have already completed steps a)-c) above.  We will now sketch the 
graph:   

 

 

2) Let 𝑓𝑓(𝑥𝑥) = 2 sin 2𝑥𝑥  from [0,𝜋𝜋].  Again, we already found parts a)-c) above.  We will now sketch 
the graph. 

 

 

3) Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 + 1. 
 



a) Let us first find all critical points of 𝑓𝑓:  𝑓𝑓′(𝑥𝑥) = 2𝑥𝑥 − 2 = 0 →    𝑥𝑥 = 1.  So (1,0) is our only 
critical point.  𝑓𝑓′(0) = −2,   𝑓𝑓′(2) = 2.  Therefore, 𝑓𝑓 is decreasing from (−∞, 1) and 
increasing from (1,∞). 

 
b) Since 𝑓𝑓 is decreasing before 𝑥𝑥 = 1, and increasing after, 𝑓𝑓 has a local minimum at (1,0). 

 
c) To find inflection point(s):  𝑓𝑓′′(𝑥𝑥) = 0 →    2 = 0.  This is an untrue statement.  Therefore, 

there are no infection points.  𝑓𝑓′′(𝑥𝑥) = 2 is constant and positive.  Therefore 𝑓𝑓 is concave 
up (−∞,∞). 

 
d) To sketch:   

 

  



EXERCISES: 

1) Use the graph below to find the following: 

 

a) The location of any local maximum and local minimum values:  Give 𝑥𝑥-values, and you can 
approximate the 𝑦𝑦-values. 

b) The intervals for which 𝑓𝑓 is increasing, and where 𝑓𝑓 is decreasing. 
c) Approximate any inflection points. 
d) Find all intervals of concavity. 
 

2) Use the graph below to find the following: 
 

 
 
a) The location of any local maximum and local minimum values:   
b) The intervals for which 𝑓𝑓 is increasing, and where 𝑓𝑓 is decreasing. 
c) Find any inflection points. 
d) Find all intervals of concavity. 
 

3) Use the graph below to find the following: 



 
 
a) The location of any local maximum and local minimum values:   
b) The intervals for which 𝑓𝑓 is increasing, and where 𝑓𝑓 is decreasing. 
c) Find any inflection points. 
d) Find all intervals of concavity. 
 

Use the following information to sketch a graph that meets the conditions given.  Note that your graph 
can be correct without being unique: 

 
4) 𝑓𝑓 is decreasing and concave up on (−∞, 3) and decreasing and concave down on (3,∞). 

 
5) 𝑓𝑓 is increasing and concave up on (−∞, 1) and increasing and concave down on (1,∞). 

 
6) 𝑓𝑓 is concave up from (−∞, 2) and concave down from (2,∞) and has an inflection point at 

(2,3). 
 

7) 𝑓𝑓 has a local maximum at (2,5), is concave down from (−∞, 4), has a vertical asymptote at 𝑥𝑥 =
4, and  concave up from (4,∞). 
 

8) 𝑓𝑓(1) = 1,   𝑓𝑓 is concave up everywhere, and 𝑓𝑓 has a local minimum at (0,−1). 
 

9) 𝑓𝑓(0) = 0, 𝑓𝑓(1) = −2, 𝑓𝑓(−1) = 2.  𝑓𝑓 has a local minimum at (1,−2), a local maximum at 
(−1,2), an infection point at (0,0). 
 

For the functions given, find the following: 

 
a) The intervals for which 𝑓𝑓 is increasing or decreasing 
b) The local maximum and minimum values of 𝑓𝑓 
c) The inflection point(s) and intervals of concavity 
d) Use steps a)-c) to sketch the graph of the function: 

 
10)  𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 8𝑥𝑥 + 1: 



 
11) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 6𝑥𝑥 + 2: 

 
12) 𝑓𝑓(𝑥𝑥) = 1

3
𝑥𝑥3 − 5

2
𝑥𝑥2 + 6𝑥𝑥: 

 
13) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 27𝑥𝑥 

 
14) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 + 3𝑥𝑥2 + 2 

 
15) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 6𝑥𝑥2 − 1 

 
16) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 4𝑥𝑥3 + 4𝑥𝑥2 

 
17) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 4𝑥𝑥3 

 
18) 𝑓𝑓(𝑥𝑥) = 2 cos 3𝑥𝑥 

 
19) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 + cos 𝑥𝑥;  [0,2𝜋𝜋] 

 

20) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
3 

 

21) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2
3 

 

  



CHAPTER 3 
SECTION 4 

SUMMARY OF CURVE SKETCHING 
 
 

In the previous section, we learned how first and second derivatives affect the shape of a graph.  We 
learned how first derivatives show us where a function is increasing, and where it is decreasing; and how 
to find critical points and local extrema.  We also learned how second derivatives help us find inflection 
points, and where a function is concave up and concave down. In Chapter 1, Section 1, we learned about 
infinite limits and vertical asymptotes; and in Chapter 1, Section 5, we learned about limits at infinity 
and horizontal asymptotes.  In this section, we will put it all together to sketch a variety of graphs. 
 
Steps for Curve Sketching: 

 
a) 𝑥𝑥 and 𝑦𝑦 intercepts 
b) Vertical and horizontal asymptotes 
c) 1st and 2nd derivatives 
d) Critical points 
e) Intervals of Increase or decrease 
f) Local/Relative extrema 
g) Inflection points 
h) Intervals of concavity 
i) Sketch 

 
a) 𝒙𝒙 and 𝒚𝒚 intercepts:  Recall what 𝑥𝑥 and 𝑦𝑦 intercepts are:  They are where the function crosses 

the 𝑥𝑥-axis, and where it crosses the 𝑦𝑦-axis.  To find each, set the other variable  equal to 0, and 
solve. 

 
b) Asymptotes:  Recall, from Section 1.1: To find the vertical asymptote(s):  Set the denominator 

equal to zero, and solver for 𝑥𝑥.  (If it doesn’t cancel a factor in the numerator, it’s a vertical 
asymptote).  From Section 1.5:  To find the horizontal asymptote:  Find lim

𝑥𝑥→±∞
𝑓𝑓(𝑥𝑥).  (Simplify, if 

necessary, and the limit will be the horizontal asymptote).  We will also briefly discuss slant 
asymptotes at the end of this section. 
 

c) 1st and 2nd derivatives:  Find 𝑓𝑓′(𝑥𝑥) and 𝑓𝑓′′(𝑥𝑥) using all the rules we have learned. 
 

d) Critical points:  Set 𝑓𝑓′(𝑥𝑥) = 0, solve for 𝑥𝑥, and find the 𝑦𝑦-value as well.  Also check to see if 
there is a value for which 𝑓𝑓′(𝑥𝑥) does not exist, yet 𝑓𝑓(𝑥𝑥) does exist.  If there is a critical number, 
also find the 𝑦𝑦-value. 
 

e) Intervals of Increase or decrease:  Substitute a value between each critical point into 𝑓𝑓′(𝑥𝑥).  If it 
is positive, it is a region that is increasing; and if negative, decreasing. 



 
f) Local/Relative extrema:  Use part e) to check on either side of each critical point.  If it is 

increasing before and decreasing after, it is a local maximum.  If it is decreasing before and 
increasing after, it is a local minimum.  You can also use the second derivative.  You will 
substitute a critical number into the second derivative.  If it is concave down, it is a maximum.  If 
it is concave up, it is a minimum.  Recall that if 𝑓𝑓′′(𝑥𝑥) = 0, the second derivative test fails. 
 

g) Inflection points:  Solve for 𝑥𝑥 by setting 𝑓𝑓′′(𝑥𝑥) = 0, and where 𝑓𝑓′′(𝑥𝑥) does not exist; and check 
to see if the concavity changes on either side. 

 
h) Intervals of concavity:  Generalize your findings from the previous step, and put it in interval 

notation for where 𝑓𝑓 is concave upward, and where it is concave downward. 
   
i) Sketch:  Use all the steps above to create the sketch of your graph. 

 

 
 
EXAMPLE: 
 
Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥 + 2.  Let us sketch the curve using the above steps: 
 

a) 𝑥𝑥 and 𝑦𝑦 intercepts:  To find the 𝑥𝑥-intercept(s):  𝑥𝑥3 − 3𝑥𝑥 + 2 = 0 →      𝑥𝑥 = 1,−2.   To find the 𝑦𝑦-
intercept:  03 − 3 ∙ 0 + 2 = 2 →     𝑦𝑦 = 2. 

 
b) Vertical and horizontal asymptotes:  𝑓𝑓 is a polynomial, and has no vertical asymptotes (it is 

continuous everywhere).  It also has no horizontal asymptotes (it has no denominator, or more 
precisely, the denominator is 1). 
 

c) 1st and 2nd derivatives:  𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 3,   𝑓𝑓′′(𝑥𝑥) = 6𝑥𝑥 
 

d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →     3𝑥𝑥2 − 3 = 0 →     𝑥𝑥 = ±1, gives (−1,4), (1,0).  Since 𝑓𝑓 
is a polynomial, it is differentiable everywhere, so there is no value such that 𝑓𝑓′(𝑥𝑥) does not 
exist. 
 

e) Intervals of increase or decrease:  We choose 3 values:  Something less than −1,  something in 
the interval  (−1,1), and something greater than 1:  𝑓𝑓′(−2) = 9, so 𝑓𝑓 is increasing from 
(−∞,−1).  𝑓𝑓′(0) = −3, so 𝑓𝑓 is decreasing from (−1,1).  𝑓𝑓′(2) = 9, so 𝑓𝑓 is increasing from 
(1,∞).  We summarize : 
 
𝑓𝑓 is increasing from (−∞,−1) ∪ (1,∞). 
𝑓𝑓 is decreasing from (−1,1). 



 
f) Local Extrema:  Our only critical points are:  (−1,4), (1,0).  𝑓𝑓 was increasing before 𝑥𝑥 = −1, and 

decreasing after.  Therefore, (−1,4) is a local maximum.  𝑓𝑓 was decreasing before 𝑥𝑥 = 1, and 
increasing after.  Therefore (1,0) is a local minimum. 

 
g) Inflection points:  𝑓𝑓′′(𝑥𝑥) = 0 →    6𝑥𝑥 = 0 →    𝑥𝑥 = 0, (0,2).  We check to see if 𝑓𝑓 changes 

concavity there:  𝑓𝑓′′(−1) = −6, 𝑓𝑓′′(1) = 6.  𝑓𝑓 changes concavity at (0,2).  Therefore (0,2) is 
our only inflection point.  (Note:  There are no values for which 𝑓𝑓′′(𝑥𝑥) does not exist). 
 

h) Intervals of concavity:  Now, we generalize what we found in part g):   
 
𝑓𝑓 is concave down from (−∞, 0)   (since 𝑓𝑓′′(−1) = −6) 
𝑓𝑓 is concave up from (0,∞)  (since 𝑓𝑓′′(1) = 6) 
 
(We also note here that since 𝑓𝑓′′(−1) is concave down, it shows (−1,4) is a local maximum, and 
since 𝑓𝑓′′(1) is concave up, it shows (1,0) is a local minimum.  It is another way to find part f)). 
 

i) Sketch: 

 
 
 
 

EXAMPLE: 
 
Let 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥 + cos 𝑥𝑥 , [0,2π].  Let us again sketch the curve by finding the steps above: 
 

a) 𝑥𝑥 and 𝑦𝑦 intercepts:  𝑥𝑥-intercept(s):  sin𝑥𝑥 + cos𝑥𝑥 = 0 →    sin𝑥𝑥 = − cos 𝑥𝑥 →    𝑥𝑥 = 3𝜋𝜋
4

, 7𝜋𝜋
4

.   To 

find the 𝑦𝑦-intercept:  sin 0 + cos 0 = 1.  So 𝑦𝑦 = 1. 
 

b) Vertical and horizontal asymptotes:  There are no vertical or horizontal asymptotes: 
 

c) 1st and 2nd derivatives:  𝑓𝑓′(𝑥𝑥) = cos 𝑥𝑥 − sin𝑥𝑥,   𝑓𝑓′′(𝑥𝑥) = − sin𝑥𝑥 − cos𝑥𝑥. 



 
d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →    cos 𝑥𝑥 − sin𝑥𝑥 = 0 →    cos 𝑥𝑥 = sin𝑥𝑥 →     𝑥𝑥 = 𝜋𝜋

4
, 5𝜋𝜋

4
 gives 

�𝜋𝜋
4

,√2� , �5𝜋𝜋
4

,−√2�. 

 
e) Intervals of increase or decrease:  We choose 3 values:  Something less than 𝜋𝜋

4
,  something in the 

interval  �𝜋𝜋
4

, 5𝜋𝜋
4
�, and something greater than 5𝜋𝜋

4
:   𝑓𝑓′ �𝜋𝜋

6
� = √3

2
− 1

2
 is positive.  Therefore 𝑓𝑓 is 

increasing from �0, 𝜋𝜋
4
�.  𝑓𝑓′ �𝜋𝜋

2
� = −1, so 𝑓𝑓 is decreasing from �𝜋𝜋

4
, 5𝜋𝜋
4
�.  𝑓𝑓′ �3𝜋𝜋

2
� = 1,  so 𝑓𝑓 is 

increasing from �5𝜋𝜋
4

, 2𝜋𝜋�.  We summarize: 

 

𝑓𝑓 is increasing from �0, 𝜋𝜋
4
� ∪ �5𝜋𝜋

4
, 2𝜋𝜋� 

𝑓𝑓 is decreasing from �𝜋𝜋
4

, 5𝜋𝜋
4
�. 

 

f) Local Extrema:  Our only critical points are:  �𝜋𝜋
4

,√2� , �5𝜋𝜋
4

,−√2�.  𝑓𝑓 is increasing before 𝜋𝜋
4

 and 

decreasing after, so �𝜋𝜋
4

,√2� is a local maximum.  𝑓𝑓 is decreasing before 5𝜋𝜋
4

, and increasing after, 

so �5𝜋𝜋
4

,−√2� is a local minimum. 

 

g) Inflection points:  𝑓𝑓′′(𝑥𝑥) = 0 →     − sin𝑥𝑥 − cos 𝑥𝑥 = 0 →    sin𝑥𝑥 = − cos𝑥𝑥 →      𝑥𝑥 = 3𝜋𝜋
4

, 7𝜋𝜋
4

.  So 

the two candidates for inflection points are �3𝜋𝜋
4

, 0� , �7𝜋𝜋
4

, 0�.  Next, checking for changes in 

concavity at each point:  𝑓𝑓′′ �𝜋𝜋
2
� = −1, so 𝑓𝑓 is concave down here.  𝑓𝑓′′(𝜋𝜋) = 1, so 𝑓𝑓 is concave 

up here.  𝑓𝑓′′ �11𝜋𝜋
6
� = 1

2
− √3

2
, so 𝑓𝑓 is concave down here.  So 𝑓𝑓 changes concavity at both 

�3𝜋𝜋
4

, 0� , �7𝜋𝜋
4

, 0�, and these are our two inflection points. 

 
h) Intervals of concavity:  Now, we generalize what we found in part g):   

 

𝑓𝑓 is concave down from �−∞, 3𝜋𝜋
4
� ∪ �7𝜋𝜋

4
,∞� 

𝑓𝑓 is concave up from �3𝜋𝜋
4

, 7𝜋𝜋
4
�. 

 

(We also note here that since 𝑓𝑓′′ �𝜋𝜋
4
� is concave down, it shows  �𝜋𝜋

4
,√2�is a local maximum, and 

since 𝑓𝑓′′ �5𝜋𝜋
4
�  is concave up, it shows �5𝜋𝜋

4
,−√2� is a local minimum.  It is another way to find 

part f)). 
 

i) Sketch: 
 



 
 
 
 
EXAMPLE: 
 

Let 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

.  Let us again sketch the curve by finding the steps above: 

 

a) 𝑥𝑥 and 𝑦𝑦 intercepts:  𝑥𝑥-intercept(s): 1
𝑥𝑥

= 0 →    1 = 0,  so no 𝑥𝑥-intercepts.  𝑦𝑦-intercept:  1
0
 is 

undefined, so no 𝑦𝑦-intercept. 
 

b) Vertical and horizontal asymptotes:  Vertical asymptote:  Set the denominator equal to zero:  
𝑥𝑥 = 0.  Since it does not cancel a factor in the numerator, it is our only vertical asymptote.  

Horizontal asymptote:  lim
𝑥𝑥→±∞

1
𝑥𝑥

= 0,  so 𝑦𝑦 = 0 is our horizontal asymptote. 

 
c) 1st and 2nd derivatives:  𝑓𝑓′(𝑥𝑥) = − 1

𝑥𝑥2
,     𝑓𝑓′′(𝑥𝑥) = 2

𝑥𝑥3
. 

 
d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →   − 1

𝑥𝑥2
= 0 →   −1 = 0, so there are no places where 𝑓𝑓 has 

a horizontal tangent.  There is a value where 𝑓𝑓′(𝑥𝑥) does not exist, but it is not in the domain of 
𝑓𝑓, so no critical points. 
 

e) Intervals of increase or decrease:  The only place we have to check is on either side of the 
vertical asymptote, where 𝑓𝑓 is undefined:  𝑓𝑓′(−1) = −1 so 𝑓𝑓 is decreasing here.  𝑓𝑓′(1) = −1, 
so 𝑓𝑓 is also decreasing here. 
 
So 𝑓𝑓 is decreasing from (−∞, 0) ∪ (0,∞). 



 
f) Local Extrema:  There are no local extrema, since there are no critical points (recall local 

extrema can only occur at critical points). 
 

g) Inflection points:  2
𝑥𝑥3

= 0 →     2 = 0, so there are no inflection points such that 𝑓𝑓′′(𝑥𝑥) = 0.  At 

𝑥𝑥 = 0,    𝑓𝑓′′(𝑥𝑥) does not exist, but it is also not in the domain of 𝑓𝑓.  So there are no inflection 
points. 
 

h) Intervals of concavity:  There are no inflection points, but 𝑓𝑓 could change  concavity at 
undefined values, so we check on either side of 𝑥𝑥 = 0.   𝑓𝑓′′(−1) = −2, so 𝑓𝑓 is concave down 
here.  𝑓𝑓′′(1) = 2,  so 𝑓𝑓 is concave up here. 
 
𝑓𝑓 is concave down from (−∞, 0) 
𝑓𝑓 is concave up from (0,∞). 
 

i) Sketch: 
 

 
 
 
 
EXAMPLE: 
 

Let 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥2−1

.  Let us again sketch the curve by finding the steps above: 

 

a) 𝑥𝑥 and 𝑦𝑦 intercepts:  𝑥𝑥-intercept(s):  1
𝑥𝑥2−1

= 0 →     1 = 0, so no 𝑥𝑥-intercepts.  𝑦𝑦-intercept:  𝑦𝑦 =
1
−1

= −1. 
 

b) Vertical and horizontal asymptotes:  Vertical asymptote:  Set the denominator equal to zero:  
𝑥𝑥2 − 1 = 0 →    𝑥𝑥 = ±1.  Since it does not cancel a factor in the numerator, our vertical 



asymptotes are 𝑥𝑥 = ±1.   .  Horizontal asymptote:  lim
𝑥𝑥→±∞

1
𝑥𝑥2−1

= 0,  so 𝑦𝑦 = 0 is our horizontal 

asymptote. 
 

c) 1st and 2nd derivatives:  𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 − 1)−1 →     
 

𝑓𝑓′(𝑥𝑥) = −(𝑥𝑥2 − 1)−2 ∙ 2𝑥𝑥 =
−2𝑥𝑥

(𝑥𝑥2 − 1)2.      

 

𝑓𝑓′′(𝑥𝑥) =
(𝑥𝑥2 − 1)2(−2) − 2(𝑥𝑥2 − 1) ∙ (2𝑥𝑥) ∙ (−2𝑥𝑥)

(𝑥𝑥2 − 1)4 =
−2(𝑥𝑥2 − 1) + 8𝑥𝑥2

(𝑥𝑥2 − 1)3 =
6𝑥𝑥2 + 2

(𝑥𝑥2 − 1)3 

 

d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →     −2𝑥𝑥
(𝑥𝑥2−1)2 = 0 →     2𝑥𝑥 = 0 →     𝑥𝑥 = 0.  So we have a critical 

point at (0,−1).  At 𝑥𝑥 = ±1,   𝑓𝑓′(𝑥𝑥) does not exist, but neither are in the domain of 𝑓𝑓.  So 
(0,−1) is our only critical point. 

 
e) Intervals of increase or decrease:  We need to check on either side of our critical point, as well 

as on either side of both undefined values (in this case, our vertical asymptotes).  𝑓𝑓′(−2) = 

positive, so 𝑓𝑓 is increasing here.  𝑓𝑓′ �−1
2
� = also positive.  𝑓𝑓′ �1

2
� = negative, so 𝑓𝑓 is decreasing 

here.  𝑓𝑓′(2) = also negative. 
 
𝑓𝑓 is increasing from (−∞,−1) ∪ (−1,0) 
𝑓𝑓 is decreasing from (0,1) ∪ (1,∞). 
 
(Note:  We do NOT say 𝑓𝑓 increasing from (−∞, 0) because 𝑓𝑓 is undefined at 𝑥𝑥 = −1.  Similarly, 
for 𝑓𝑓 decreasing.) 
 

f) Local Extrema:  𝑓𝑓′(𝑥𝑥) is increasing before 𝑥𝑥 = 0, and decreasing after, so (0,−1) is a local 
maximum. 

 

g) Inflection points:  𝑓𝑓′′(𝑥𝑥) = 0 →     6𝑥𝑥2+2
(𝑥𝑥2−1)3 →     6𝑥𝑥2 = −2  means no inflection points.  𝑓𝑓′′(𝑥𝑥) 

does not exist at 𝑥𝑥 = ±1, but they are not in the domain of  𝑓𝑓. 
 

h) Intervals of concavity:  We have no inflection points, but we need to check for changes in 
concavity around the undefined values (vertical asymptotes):  𝑓𝑓′′(−2) = positive, so 𝑓𝑓 is 
concave up, 𝑓𝑓′′(0) = negative, so 𝑓𝑓 is concave down, and 𝑓𝑓′′(2) = positive, and 𝑓𝑓 is concave up 
again. 
 
𝑓𝑓 is concave up (−∞,−1) ∪ (1,∞) 
𝑓𝑓 is concave down (−1,1). 
 



i) Sketch: 
 

 
 
 
 
EXAMPLE: 
 

Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2
3.  Let us again sketch the curve by finding the steps above: 

 
a) 𝑥𝑥 and 𝑦𝑦 intercepts:  𝑥𝑥-intercept(s):  (0,0) is the only 𝑥𝑥 and 𝑦𝑦-intercept. 

 
b) Vertical and horizontal asymptotes:  There are no vertical or horizontal asymptotes. 

 

c) 1st and 2nd derivatives:  𝑓𝑓′(𝑥𝑥) = 2
3
𝑥𝑥−

1
3 = 2

3𝑥𝑥
1
3 

,     𝑓𝑓′′(𝑥𝑥) = −2
9
𝑥𝑥−

4
3 = − 2

9𝑥𝑥
4
3
. 

 
d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →     2

3𝑥𝑥
1
3 

= 0 →      2 = 0 so there are no critical points for 

which 𝑓𝑓 has a horizontal tangent line.  However, when 𝑥𝑥 = 0, it is a value for which 𝑓𝑓′(𝑥𝑥) does 
not exist, and this one is in the domain of 𝑓𝑓.  Therefore, (0,0) is a critical point of 𝑓𝑓. 
 

e) Intervals of increase or decrease:  We check on either side of our critical point (0,0).   𝑓𝑓′(−1) =
−2

3
, so 𝑓𝑓 is decreasing, and 𝑓𝑓′(1) = 2

3
 so 𝑓𝑓 is increasing. 

 
𝑓𝑓 is decreasing from (−∞, 0) 
𝑓𝑓 is increasing from (0,∞). 
 

f) Local Extrema:  𝑓𝑓′(𝑥𝑥) is decreasing before 𝑥𝑥 = 0, and increasing after, so (0,−1) is a local 
minimum. 

 



g) Inflection points:  𝑓𝑓′′(𝑥𝑥) = 0 →     − 2

9𝑥𝑥
4
3

= 0 →    −2 = 0 which does not give an inflection 

point.  However at 𝑥𝑥 = 0,    𝑓𝑓′′(𝑥𝑥) does not exist, and is in the domain of 𝑓𝑓.  Therefore, we will 
check for concavity changes on either side of 0:  We notice that 𝑓𝑓′′(𝑥𝑥) is always negative on 
both sides of 𝑥𝑥 = 0.  Therefore, there are no inflection points. 
 

h) Intervals of concavity:  We notice from part g), that: 
 
𝑓𝑓 is concave down (−∞, 0) ∪ (0,∞). 
 

i) Sketch: 
 

 
 
 
 

SLANT ASYMPTOTE EXAMPLE: 
 

Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−9
𝑥𝑥−1

.  Let us again sketch the curve by finding the steps above: 

 

a) 𝑥𝑥 and 𝑦𝑦 intercepts:  𝑥𝑥-intercept(s):  𝑥𝑥
2−9
𝑥𝑥−1

= 0 →     𝑥𝑥 = ±3.  To find the 𝑦𝑦-intercept:  0
2−9
0−1

= 9. 
 

b) Asymptotes:  
 
Vertical Asymptote:  𝑥𝑥 − 1 = 0 →     𝑥𝑥 = 1.  (Reminder:  Does not cancel a factor in the 
numerator, or it would be a hole) 
 

 There are no horizontal asymptotes for this one.  ( lim
𝑥𝑥→∞

 𝑥𝑥
2−9
𝑥𝑥−1

= ∞,   lim
𝑥𝑥→−∞

𝑥𝑥2−9
𝑥𝑥−1

= −∞). Instead, 

there is a slant asymptote.  How do we know?  When the degree of the numerator is one degree 
greater than the degree of the denominator, instead of a horizontal asymptote, we have a slant 
asymptote.  (Note:  if the degree of the numerator is more than one degree greater than the 



denominator, we will not have a horizontal nor a slant asymptote).   (We may still have vertical 
asymptote(s)). 
 

Okay, so how do we find the slant asymptote?  We perform long division, 𝑥𝑥
2−9
𝑥𝑥−1

= 𝑥𝑥 + 1 − 8
𝑥𝑥−1.

.  

This suggests that 𝑦𝑦 = 𝑥𝑥 + 1 is our slant asymptote.  𝑓𝑓(𝑥𝑥) − (𝑥𝑥 + 1) = − 8
𝑥𝑥−1

.   lim
𝑥𝑥→±∞

− 8
𝑥𝑥−1

= 0 

→   𝑓𝑓(𝑥𝑥) − (𝑥𝑥 + 1) = 0 →     𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 1 →     𝑦𝑦 = 𝑥𝑥 + 1 is our slant asymptote.  (Note that 
when the degree of the numerator is one degree greater than the degree of the denominator, 
we always get a linear equation performing long division, and after taking the limit). 

 
 To Summarize:  The vertical asymptote is 𝑥𝑥 = 1, and the slant asymptote is 𝑦𝑦 = 𝑥𝑥 + 1. 
 

c) 1st and 2nd derivatives:  𝑓𝑓′(𝑥𝑥) =
(𝑥𝑥−1)∙2𝑥𝑥−�𝑥𝑥2−9�

(𝑥𝑥−1)2 = 𝒙𝒙𝟐𝟐−𝟐𝟐𝟐𝟐+𝟗𝟗
(𝒙𝒙−𝟏𝟏)𝟐𝟐 ,    

 

 𝑓𝑓′′(𝑥𝑥) =
(𝑥𝑥 − 1)2 ∙ (2𝑥𝑥 − 2) − 2(𝑥𝑥 − 1) ∙ (𝑥𝑥2 − 2𝑥𝑥 + 9)

(𝑥𝑥 − 1)4

=
(2𝑥𝑥 − 2) ∙ [(𝑥𝑥2 − 2𝑥𝑥 + 1) − (𝑥𝑥2 − 2𝑥𝑥 + 9)]

(𝑥𝑥 − 1)4 =
(2𝑥𝑥 − 2) ∙ (−8)

(𝑥𝑥 − 1)4

=
−16𝑥𝑥 + 16

(𝑥𝑥 − 1)4 = −
16(𝑥𝑥 − 1)
(𝑥𝑥 − 1)4 = −

𝟏𝟏𝟏𝟏
(𝒙𝒙 − 𝟏𝟏)𝟑𝟑. 

 

d) Critical points:  We set 𝑓𝑓′(𝑥𝑥) = 0 →     𝑥𝑥
2−2𝑥𝑥+9
(𝑥𝑥−1)2 = 0 →     𝑥𝑥2 − 2𝑥𝑥 + 9 = 0 →    𝑥𝑥 = 2±�4−4(9)

2
 

has no solutions, and 𝑥𝑥 = 1 is not in the domain of 𝑓𝑓, so no critical points. 
 

e) Intervals of increase or decrease:  Since we have no critical points, we need only check on either 
side of the vertical asymptote:  𝑓𝑓′(0) = positive, so 𝑓𝑓 is increasing, and 𝑓𝑓′(2) = also positive, so 
𝑓𝑓 is increasing from (−∞, 1) ∪ (1,∞). 

 
f) Local Extrema:  𝑓𝑓 has no local extrema, since there are no critical points. 

 
g) Inflection points:  𝑓𝑓′′(𝑥𝑥) = 0 →     − 16

(𝑥𝑥−1)3 = 0 →    −16 = 0, so no inflection points.  (Note 

that 𝑥𝑥 = 1 is not in the domain of 𝑓𝑓. 
 

h) Intervals of concavity:  We have no inflection points, but we need to check for changes in 
concavity around the undefined value (vertical asymptote):  𝑓𝑓′′(0) = positive, so 𝑓𝑓 is concave 
up here, and 𝑓𝑓′′(2) = negative so 𝑓𝑓 is concave down here. 
 
𝑓𝑓 is concave up from (−∞, 1) 
𝑓𝑓 is concave down from (1,∞). 
 



i) Sketch: 
,  

 
 

  



EXERCISES: 
 

Use the following steps to sketch the graph of the function: 
 

a) 𝑥𝑥 and 𝑦𝑦 intercepts  (𝑥𝑥-intercepts for all, except polynomials over degree 2). 
b) Vertical and horizontal asymptotes 
c) 1st and 2nd derivatives 
d) Critical points 
e) Intervals of Increase or decrease 
f) Local/Relative extrema 
g) Inflection points 
h) Intervals of concavity 
i) Sketch 

 
1) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 + 4𝑥𝑥 + 2: 

 
2) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 5𝑥𝑥 + 6: 
 
3) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 − 16: 

 
4) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 3𝑥𝑥2 + 3𝑥𝑥: 
 
5) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 9𝑥𝑥2: 
 
6) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 3𝑥𝑥2 + 1:   
 
7) 𝑓𝑓(𝑥𝑥) = −𝑥𝑥3 + 3𝑥𝑥 − 2:   
 
8) 𝑓𝑓(𝑥𝑥) = 1

3
𝑥𝑥3 − 2𝑥𝑥 − 3   

 
9) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 9𝑥𝑥 + 1:   
 
10) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 + 4𝑥𝑥2: 
 
11) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 + 14𝑥𝑥2 + 48𝑥𝑥: 
 
12) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 − 2𝑥𝑥3: 
 
13) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 − sin𝑥𝑥, [0,2𝜋𝜋]: 
 
14) 𝑓𝑓(𝜃𝜃) = sin 2𝜃𝜃 + cos 2𝜃𝜃,   [0,𝜋𝜋]: 
 
15) 𝑓𝑓(𝑡𝑡) = sin2 𝑡𝑡, [0,2𝜋𝜋]: 



 
16) 𝑓𝑓(𝑥𝑥) = √3 sin𝑥𝑥 − cos 𝑥𝑥,   [0,2𝜋𝜋]: 
 
17) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥

1−sin𝑥𝑥
: 

 
18) 𝑓𝑓(𝑥𝑥) = 3

𝑥𝑥
: 

 
19) 𝑓𝑓(𝑥𝑥) = − 2

𝑥𝑥
: 

 
20) 𝑓𝑓(𝑥𝑥) = 3

𝑥𝑥−1
: 

 
21) 𝑓𝑓(𝑥𝑥) = 2

2𝑥𝑥−2
:  

 
22) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−1

𝑥𝑥
: 

 
23) 𝑓𝑓(𝑥𝑥) = − 5

𝑥𝑥+3
: 

 
24) 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥2
: 

 
25) 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥2−4
: 

 
26) 𝑓𝑓(𝑥𝑥) = − 2

𝑥𝑥2+3
: 

 

27) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2

𝑥𝑥2−9
: 

 

28) 𝑓𝑓(𝑡𝑡) = 𝑥𝑥2−2
𝑥𝑥

: 
 

29) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2−4
𝑥𝑥+2

: 
 

30) 𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 1)
1
3: 

 

31) 𝑓𝑓(𝑥𝑥) = 2(𝑥𝑥 − 2)
1
3: 

 

32) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 + 1)
2
3: 

 

33) 𝑓𝑓(𝑥𝑥) = 3(𝑥𝑥 − 3)
2
3: 

 



 

CHAPTER 3 
SECTION 5 

APPLICATIONS:  OPTIMIZATION 
 

 
We now get to something very exciting!  We get another direct application of derivatives, which is a 
direct application of most of the ideas in this chapter! 
 
What is optimization?  It is the application of finding extrema, i.e. maximizing and minimizing functions.) 
 
These are a form of what people like to call word problems (or story problems). 
 
 
STEPS FOR OPTIMIZATION: 
 
(Note:  These steps come after carefully reading the problem). 
 

1) Draw a picture, (or make a table) if plausible. 
2) Label the picture; or if no picture, choose variables. 
3) Write out an expression for the function that you want to optimize: 

Note:  Many of these problems have more than one variable: 
If more than one variable, you will also need an equation relating the variables. 

4) Get the equation in step 3) down to 1 variable, by solving for one in terms of the other.  (Note, 
you may find other relationships to compress them all if needed). 

5) Substitute the new equation in part 4) into the function you are trying to optimize from step 3). 
6) Find all critical points, by solving 𝑓𝑓′ = 0. 
7) Show the critical point(s) are a maximum or a minimum by using either the first derivative test, 

or the second derivative test. 

 

EXAMPLE: 

Sally has a rectangular fence she wants to build.  She has 200 ft. of fencing material.  What are the 
dimensions that will maximize the area, and what is the maximum area? 

1) First, we draw a picture. 

 

2) We have also labeled the picture. 



 

3) Here, we need two expressions: 
 
a) We need a function that we are trying to maximize:  In this case, it is Area:  𝐴𝐴 = 𝑥𝑥𝑥𝑥. 
b) In this case we have 2 variables, so we need an equation the relates them:  2𝑥𝑥 + 2𝑦𝑦 = 200. 
 

4) Let us solve for 𝑦𝑦:    𝑦𝑦 = 100 − 𝑥𝑥:  (Note:  It didn’t matter which variable we chose to solve for, 
as either would lead to the same result). 
 

5) We substitute 4) into our area function:  𝐴𝐴 = 𝑥𝑥(100 − 𝑥𝑥) = 100𝑥𝑥 − 𝑥𝑥2 . 
 

6) We find all critical points:  𝐴𝐴′ = 100 − 2𝑥𝑥 = 0 →    𝑥𝑥 = 50 𝑓𝑓𝑓𝑓.  When 𝑥𝑥 = 50,    

        𝑦𝑦 = 100 − 50 = 50.  The area is 50 × 50 = 2500 𝑓𝑓𝑡𝑡2 . 

 
7) We will use the second derivative to show that 𝑥𝑥 = 50 is a maximum and not a minimum:  

 𝐴𝐴′′ = −2, which is always concave down.  Therefore, (50,50) is a local maximum. 
 
 

EXAMPLE: 
 
Joyce is building a fence for her two dogs.  She wants to make two separate areas for them, with fencing 
down the middle.  She will use her house as one side of the area.  Joyce has 400 ft. of fencing.  What are 
the dimensions that will maximize the area, and what is the total area that will be enclosed? 
 

1)  First, we draw a picture: 
 
 
 
 
 
𝑦𝑦    𝑦𝑦    𝑦𝑦      
 
 
 
 
 
 
 
                                                               𝑥𝑥                                                         
 

2)  We have also labeled the picture.  (Note:  I have labeled the whole horizontal side, 𝑥𝑥, instead of 
2𝑥𝑥.  This way, we can avoid some fractions.) 



 
 
 

3) Here, we need two expressions: 
 

a) We need a function that we are trying to maximize:  In this case, it is Area:  𝐴𝐴 = 𝑥𝑥𝑥𝑥. 
b) In this case we have 2 variables, so we need an equation the relates them:  

 𝑥𝑥 + 3𝑦𝑦 = 400. 
 

4) In this case, we choose to solve for 𝑥𝑥 to avoid fractions:  𝑥𝑥 = 400 − 3𝑦𝑦. 
 

5) We substitute 4) into our area function:  𝐴𝐴 = (400 − 3𝑦𝑦)𝑦𝑦 = 400𝑦𝑦 − 3𝑦𝑦2 . 
 

6) We find all critical points:  𝐴𝐴′ = 400 − 6𝑦𝑦 = 0 →     𝑦𝑦 = 66.66 𝑓𝑓𝑓𝑓. When 𝑦𝑦 = 66.66,   
 

 𝑥𝑥 = 400 − 3 ∙ 75 = 200.02 𝑓𝑓𝑓𝑓.  𝐴𝐴 = 66.66 × 200.02 = 13,333.33 𝑓𝑓𝑡𝑡2 . 
 

8) We will use the second derivative to show that 𝑦𝑦 = 75 is a maximum and not a minimum:  
 𝐴𝐴′′ = −6, which is always concave down.  Therefore, (200.02,66.66) is a local maximum. 

 

EXAMPLE: 

George is building a rectangular container out of metal, with no top, to store some garden supplies.  
George has a fixed surface area of 150 𝑓𝑓𝑡𝑡2 .  He wants to maximize the volume. The length is twice the 
width.  What are dimensions that will maximize the volume, and what is the volume? 

1)  First, we draw a picture: 



 

2) We have also labeled the picture. 
3) Here, we need two expressions: 

 
a) We need a function that we are trying to maximize:  In this case, it is Volume:  𝑉𝑉 = 2𝑥𝑥2𝑦𝑦. 
b) In this case we have 2 variables, so we need an equation the relates them:  

 2𝑥𝑥2 + 2𝑥𝑥𝑥𝑥 + 4𝑥𝑥𝑥𝑥 = 2𝑥𝑥2 + 6𝑥𝑥𝑥𝑥 = 150. 

4) In this case we solve for 𝑦𝑦:   𝑦𝑦 = 150−2𝑥𝑥2

6𝑥𝑥
. 

 

5) We substitute 4) into our volume function:  𝑉𝑉 = 2𝑥𝑥2 �150−2𝑥𝑥
2

6𝑥𝑥
� = 1

3
(150𝑥𝑥 − 2𝑥𝑥3). 

 
6) We find all critical points:  𝑉𝑉′ = 1

3
(150 − 6𝑥𝑥2) = 50 − 2𝑥𝑥2 = 0 →     𝑥𝑥2 = 25 →     𝑥𝑥 = ±5.      

 
 𝑥𝑥  cannot be −5, because length cannot be negative.  So 𝑥𝑥 = 5 𝑓𝑓𝑓𝑓,   𝑦𝑦 = 10

3
 𝑓𝑓𝑓𝑓.   Volume is 2 ∙

25 ∙ 10
3

= 500
3
𝑓𝑓𝑡𝑡3 . 

 
9) We will use the second derivative to show that 𝑥𝑥 = 5 is a maximum and not a minimum:  

 𝑉𝑉′′ = −4𝑥𝑥 →    𝑉𝑉′′(5) = −20 which is concave down.  Therefore, �5, 10
3
� is a local maximum. 

 
 

 
 
 
 

X 

Y 

2x 



EXAMPLE:   
 
Teresa has a soup company.  She is trying to save money on the materials she is using for her cans.  She 
uses cylindrical cans to contain her soup.  If her can needs a volume of  35 𝑖𝑖𝑛𝑛3, what dimensions will 
minimize the surface area, and what is the surface area? 
 

1) We draw a picture: 

 

 

2) We have also labeled the picture. 

 

3) Here, we need two expressions: 
 
a) We need a function that we are trying to minimize:  In this case, it is Surface Area:   
b) 𝑆𝑆 = 2𝜋𝜋𝑟𝑟2 + 2𝜋𝜋𝜋𝜋ℎ. 
c) In this case we have 2 variables, so we need an equation the relates them:  𝑉𝑉 = 𝜋𝜋𝑟𝑟2ℎ = 35. 
 

4) Here we solve for ℎ:   ℎ = 35
𝜋𝜋𝑟𝑟2

. 
 

5) We substitute 4) into our surface area function: 𝑆𝑆 = 2𝜋𝜋𝑟𝑟2 + 2𝜋𝜋𝜋𝜋 ∙ � 35
𝜋𝜋𝑟𝑟2

� = 2𝜋𝜋𝑟𝑟2 + 70
𝑟𝑟

. 
 

6) We find all critical points:  𝑆𝑆′ = 4𝜋𝜋𝜋𝜋 − 70
𝑟𝑟2

= 0 →    70
𝑟𝑟2

= 4𝜋𝜋𝜋𝜋 →     4𝜋𝜋𝑟𝑟3 = 70 →     𝑟𝑟3 = 35
2𝜋𝜋
→

    𝑟𝑟 ≈ 1.77.    ℎ ≈ 3.56. 
 

7) 𝑆𝑆′′ = 4𝜋𝜋 + 40
𝑟𝑟3

  is always positive, since 𝑟𝑟 is always positive.  This makes 𝑆𝑆 concave up whenever 
𝑟𝑟 > 0, so we have a local minimum. 
 

 

 

 



EXAMPLE:   

Joey is making a rectangular box out of a rectangular sheet of cardboard.  The sides are         3 × 4 𝑓𝑓𝑓𝑓.  
He is cutting out the corners, so he can fold it up and tape it together.  What size cut should he make to 
maximize the volume of the box? 

1) First we draw a picture; 

 

2)  We have already labeled the picture. 
 

3) In this case we only need one expression for Volume:  𝑉𝑉 = (3 − 2𝑥𝑥)(4 − 2𝑥𝑥)𝑥𝑥 = 
 

𝑥𝑥(12 − 14𝑥𝑥 + 4𝑥𝑥2) = 4𝑥𝑥3 − 14𝑥𝑥2 + 12𝑥𝑥. 
4) We can skip this 
5) And this 
6) We skip ahead to critical points:  𝑉𝑉′ = 12𝑥𝑥2 − 28𝑥𝑥 + 12 = 0 →     3𝑥𝑥2 − 7𝑥𝑥 + 3 = 0 →     𝑥𝑥 =

7±√13
6

≈ 1.77, .57.  We immediately see that we have to take 7−√13
6

≈ .57, as the other value is 

bigger than 3 when doubled. 
 

7) 𝑉𝑉′′ = 24𝑥𝑥 − 28.  At 𝑥𝑥 ≈ .57, 𝑉𝑉′′ is negative.   So 𝑉𝑉 is concave down, and a maximum. 
 

 

EXAMPLE:   

Find the point on the graph 𝑦𝑦 = 𝑥𝑥 − 1  that is closest to the point  (0,2).  For this problem, we need the 
distance formula:  𝑑𝑑 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2.  This involves a square root.  We can minimize the 
distance squared instead of the distance to obtain the same result. 

1) We do not need a picture for this. 
 

2) Our variables are already chosen. 
 

3) We want to minimize 𝑑𝑑2 = (𝑦𝑦 − 2)2 + (𝑥𝑥 − 0)2 . 
 



4) This step is already done. 
 

5)  We substitute 𝑦𝑦 = 𝑥𝑥 − 1  for 𝑦𝑦:  (𝑥𝑥 − 1 − 2)2 + (𝑥𝑥 − 0)2 = (𝑥𝑥 − 3)2 + 𝑥𝑥2 . 
 

6) We find all critical points:  (𝑑𝑑2)′ = 2(𝑥𝑥 − 3) + 2𝑥𝑥 = 2𝑥𝑥 − 6 + 2𝑥𝑥 = 4𝑥𝑥 − 6.     
4𝑥𝑥 − 6 = 0 →     𝑥𝑥 = 3

2
.    So �3

2
, 1
2
�  is our only critical point. 

 

7) (𝑑𝑑2)′′ = 4   is concave up always.  So,  �3
2

, 1
2
�  is a local minimum. 

 

EXAMPLE: 

This next example is a business example.  You should know that profit equals revenue minus cost, and 
revenue equals your price function times the number of items you are selling. 

Jenny is opening a clothing line of dresses: 

The price, 𝑝𝑝 is modeled by 𝑝𝑝 = 100 − 0.5𝑥𝑥. 

The total cost of producing 𝑥𝑥 dresses is 𝐶𝐶(𝑥𝑥) = 1000 + 0.5𝑥𝑥2 . 

a) Find the total revenue, 𝑅𝑅(𝑥𝑥).    𝑅𝑅(𝑥𝑥) = 𝑝𝑝 ∙ 𝑥𝑥 = 100𝑥𝑥 − 0.5𝑥𝑥2 . 
 

b) Find the total profit, 𝑃𝑃(𝑥𝑥).    𝑃𝑃(𝑥𝑥) = 𝑅𝑅(𝑥𝑥) − 𝐶𝐶(𝑥𝑥) = 100𝑥𝑥 − 0.5𝑥𝑥2 − (1000 − 0.5𝑥𝑥2) = 
100𝑥𝑥 − 1000. 
 

c) How many dresses must Jenny sell to maximize profit?  We find the first derivative of profit, and 
set it equal to zero to find our critical number:  𝑃𝑃′ = 100.  Therefore we must sell 100 dresses in 
order to maximize our profit. 
 

d) What is the maximum profit?  𝑃𝑃(100) = 100 ∙ 100 − 1000 = $9000. 
 

e) What price per dress must Jenny charge to maximize her profit?  𝑝𝑝 = 100 − 0.5 ∙ 100 = $50. 
 

  



EXERCISES: 
 

1) Of all the rectangles whose perimeter is 50 cm, find the dimensions of the rectangle with the 
maximum area?  What is the maximum area? 
 

2) Kevin is building a rectangular fence for his dogs.  He has 200 feet of fencing.  What are the 
dimensions that will produce the maximum area, and what is the maximum area? 
 

3) Anna is building a fence for her two dogs.  She wants to make two separate areas for them, with 
fencing down the middle.  She will use her house as one side of the area.  Joyce has 300 ft. of 
fencing.  What are the dimensions that will maximize the area, and what is the total area that 
will be enclosed? 
 

4) Joe is building a fence for his 3 dogs.  He wants to keep them all separate, or they will fight.  He 
has 600 feet of fencing.  He will use the barn as one side of the area enclosed.  What are the 
dimensions that will maximize the area, and what is the total area that will be enclosed? 
 

5) Fred is building a rectangular fence for his garden.  His garden must have an area of 12,000 𝑓𝑓𝑡𝑡2 
in order for his plan to have enough room.  He wants to minimize the cost of the materials.  
What are the dimensions that will minimize the cost? 
 

6) Lara is building a fence for her yard.  One side of the yard will be her house.  She needs an area 
of 10,000 𝑓𝑓𝑡𝑡2 .  She has not yet purchased the fencing material.  Lara wants to save on cost.  If 
the cost of the fencing material is $20/lateral foot, what are the dimensions that will minimize 
the materials purchased, and how much will she need to spend on her fencing supplies? 
 

7) Jane is building a rectangular container out of wood, including a top, to store some household 
items.  Jane has a fixed surface area of 100 𝑓𝑓𝑡𝑡2 .  She wants to maximize the volume. The length 
is three times the width.  What are dimensions that will maximize the volume, and what is the 
volume? 
 

8) A class project involves building a box out of cardboard.  The class has quite a bit of cardboard 
for many projects.  The box needs to have a volume of 30 𝑓𝑓𝑡𝑡3.  The length and the width will be 
equal.  The class wants to use the minimum amount of cardboard necessary to obtain the 
desired volume.  What are the dimensions that will minimize the surface area and what is the 
surface area? 
 

9) Mindy has a soup company.  She is trying to save money on the materials she is using for her 
cans.  She uses cylindrical cans to contain her soup.  If her can has a volume of  570 𝑐𝑐𝑚𝑚3, what 
dimensions will minimize the surface are, and what is the surface area? 
 

10) Johnny is building a cylindrical tank out of metal to hold used motor oil.  He has 200 𝑓𝑓𝑡𝑡2 of 
metal to be used.  What are the dimensions that will maximize the volume, and what is the 
maximum volume? 



 
11) Bob is making a box with rectangular box out of a squarer sheet of cardboard.  The sides are         

2 × 2 𝑓𝑓𝑓𝑓.  He is cutting out the corners, so he can fold it up and tape it together.  What size cut 
should he make to maximize the volume of the box? 
 

12) Sharla is making a box with rectangular box out of a rectangular sheet of cardboard.  The sides 
are 4 × 5 𝑓𝑓𝑓𝑓.  She is cutting out the corners, so she can fold it up and tape it together.  What size 
cut should she make to maximize the volume of the box? 
 

13) Enclose a rectangle within a circle.  Find the maximum area of the rectangle that lies within a 
circle of radius 5. 
 

14) What are the dimensions of an isosceles triangle that will produce the largest area, inscribed in a 
circle of radius 8. 
 

15) Sarah is building her first house.  She wants to put in a Norman window.  This window is a 
rectangular, with a semi-circle on top.  The perimeter will be 50 ft.  What are the dimensions 
that will maximize the area, and what is the maximum area: 
 

 
16)  A cylinder is inscribed in a sphere of radius 10.  What are the dimensions of the cylinder that 

will maximize its volume, and what is its volume? 
 

17) Find the point on the graph of  𝑦𝑦 = 3𝑥𝑥 − 2 that is closest to (0,0). 
 

18) Find the point on the graph of 𝑦𝑦 = 𝑥𝑥 + 2 that is closest to (1,0). 
 

19) Find the point t on the graph of 𝑦𝑦 = √𝑥𝑥 that is closest to (1,0). 
 

20) Find the point on the graph of 𝑥𝑥2 + 𝑦𝑦2 = 1 that is farthest from  (1,0). 
 

21) A poster will have a total area of 1150 𝑐𝑐𝑚𝑚2.  If the margins are  3 𝑐𝑐𝑐𝑐 all around, what 
dimensions will give the largest printed area, and what is the printed area? 
 

22) Acme Appliances are selling some brand new stoves.  The price per stove is modeled by 



 𝑝𝑝 = 800 − 0.5𝑥𝑥.  The cost of producing 𝑥𝑥 stoves is modeled by 𝐶𝐶(𝑥𝑥) = 6000 + 0.5𝑥𝑥2 . 
 
a) Find the total revenue, 𝑅𝑅(𝑥𝑥). 
b) Find the total profit, 𝑃𝑃(𝑥𝑥). 
c) How many stoves must Acme sell in order in order to maximize its profit? 
d) What is the maximum profit? 
e) What price per stove must be changed to maximize profit? 
 

23) Hunter is opening a clothing line of jeans.  The price, 𝑝𝑝 is modeled by 𝑝𝑝 = 150 − 0.5𝑥𝑥. 
The total cost of producing 𝑥𝑥 dresses is 𝐶𝐶(𝑥𝑥) = 1500 + 0.5𝑥𝑥2 . 
 
a) Find the total revenue, 𝑅𝑅(𝑥𝑥). 
b) Find the total profit, 𝑃𝑃(𝑥𝑥). 
c) How many jeans must Hunter sell in order in order to maximize his profit? 
d) What is the maximum profit? 
e) What price per stove must be changed to maximize profit? 

  



CHAPTER 3 
SECTION 6 

INDEPTERMINATE FORMS OF LIMITS USING L’HOSPITAL’S RULE 
NEWTON’S METHOD 

 
 
L’HOSPITAL’S RULE: 
 

 
Before we start let’s talk about L’Hospital!  First off, let’s talk about how to pronounce it!  This may seem 
unimportant, but we don’t want to sound silly when we discuss him with all our friends and neighbors.  
.  It is French and pronounced:  Low Pee Tahl.  There!  Not El Hospital!  Okay, on to the mathematician.  
He was born Guillaume-François-Antoine Marquis de L'Hôpital in 1661 in Paris, France.  He showed a 
natural aptitude early on, and had a military career.  He is mostly known, because of his association with 
Johann Bernoulli (discussed in Chapter 0).  L’Hospital contributed to calculus, including determining 
tangents to curves.  He became a professor of mathematics at Groningen in 1695, and in 1696 he 
published the first textbook on differential calculus.  L’Hospital’s Rule was in chapter 9.  (Wikipedia). 
 
L’Hospital’s Rule applies to limits:  It only applies to indeterminate forms of ∞

∞
  or 0

0
.  There are other 

indeterminate forms as well.  We can often take the other forms, and manipulate them into one of the 
forms in which L’Hospital’s Rule applies. 
 

We have already dealt with these forms.  For example:  lim
𝑥𝑥→∞

2𝑥𝑥2+2𝑥𝑥−9
3𝑥𝑥2+7

.  This is a form of ∞
∞

.  Previously, 

we divided all terms in the numerator and denominator by 𝑥𝑥2 to get lim
𝑥𝑥→∞

2+2𝑥𝑥−
9
𝑥𝑥2

3+ 7
𝑥𝑥2

= 2
3

.  This is a case 

where L’Hospital’s Rule would also apply.  But what if we had lim
𝑥𝑥→∞

ln 𝑥𝑥 
𝑥𝑥

 ?  This would be much harder to 

algebraically manipulate.  This is where L’Hospital’s Rule  comes in. (Note: it is in the form of ∞
∞

). 
 
L’Hospital’s Rule:  Let 𝒇𝒇 and 𝒈𝒈 be differentiable functions on an open interval 𝑰𝑰 that contains 𝒂𝒂, except 

possibly at 𝒂𝒂.  Also let 𝒈𝒈′(𝒙𝒙) ≠ 𝟎𝟎.  If 𝐥𝐥𝐥𝐥𝐥𝐥
𝒙𝒙→𝒂𝒂

𝒇𝒇(𝒙𝒙)
𝒈𝒈(𝒙𝒙)

 is a form of either ∞
∞

  or 𝟎𝟎
𝟎𝟎
,  then 𝐥𝐥𝐥𝐥𝐥𝐥

𝒙𝒙→𝒂𝒂
𝒇𝒇(𝒙𝒙)
𝒈𝒈(𝒙𝒙)

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝒙𝒙→𝒂𝒂

𝒇𝒇′(𝒙𝒙)
𝒈𝒈′(𝒙𝒙)

. 

 
We can keep applying L’Hospital’s Rule over and over, as many times as we like until it no longer applies.  
I.E., as long as we have a form of ∞

∞
  or 0

0
, we can continue to apply it to the limit.  Once it is no longer in 

one of these forms, we must stop. 
 

EXAMPLE:  Let’s go back to our previous example:  lim
𝑥𝑥→∞

2𝑥𝑥2+2𝑥𝑥−9
3𝑥𝑥2+7

.   After some algebraic manipulation, 

we found the limit was 2
3
.  Let us  now use L’Hospital’s Rule to calculate the limit:   lim

𝑥𝑥→∞
2𝑥𝑥2+2𝑥𝑥−9
3𝑥𝑥2+7

=

lim
𝑥𝑥→∞

4𝑥𝑥+2
6𝑥𝑥

= lim
𝑥𝑥→∞

4
6

= 2
3

.  We observe that we got the same answer.  Also note that we had to perform 

L’Hospital’s Rule twice. 
 



EXAMPLE:  
 

 Let’s go back to the other example we mentioned previously:  lim
𝑥𝑥→∞

ln 𝑥𝑥 
𝑥𝑥

 .  This one proved to be quite 

difficult to algebraically manipulate to get the answer.  In fact, we did not try.  Let us now apply 

L’Hospital’s Rule:  :  lim
𝑥𝑥→∞

ln 𝑥𝑥 
𝑥𝑥

 = lim
𝑥𝑥→∞

1
𝑥𝑥
1

= 0. 
 
 
EXAMPLE: 
 

Let us calculate the lim
𝑥𝑥→∞

𝑥𝑥2−7𝑥𝑥
𝑒𝑒𝑥𝑥

.   We have a form of ∞
∞

, so we apply L’Hospital’s Rule:   lim
𝑥𝑥→∞

𝑥𝑥2−7𝑥𝑥
𝑒𝑒𝑥𝑥

=

lim
𝑥𝑥→∞

2𝑥𝑥−7
𝑒𝑒𝑥𝑥

= lim
𝑥𝑥→∞

2
𝑒𝑒𝑥𝑥

= 0. 

 
 
EXAMPLE:   
 
Let’s look at lim

𝑥𝑥→0
cos 𝑥𝑥−1
sin𝑥𝑥

  is a form of 0
0
 so L’Hospital’s Rule applies.  lim

𝑥𝑥→0
cos 𝑥𝑥−1
sin𝑥𝑥

= lim
𝑥𝑥→0

− sin𝑥𝑥
cos𝑥𝑥

= 0
1

= 0. 

 
 
EXAMPLE: 
 

How about lim
𝑥𝑥→0+

ln 𝑥𝑥
csc 𝑥𝑥

 is a form of −∞
∞

  which is still a form  in which L’Hospital’s Rule applies.  It doesn’t 

matter whether the ∞ is ±.  So lim
𝑥𝑥→0+

ln 𝑥𝑥
csc 𝑥𝑥

= lim
𝑥𝑥→0+

1
𝑥𝑥

−csc 𝑥𝑥 cot𝑥𝑥
= (is still a form of ∞

−∞
) = 

− lim
𝑥𝑥→0+

sin2 𝑥𝑥
𝑥𝑥∙cos 𝑥𝑥

= �Now a form of 0
0

 after some algebra� =

− lim
𝑥𝑥→0+

2 sin 𝑥𝑥 cos 𝑥𝑥
−𝑥𝑥 sin𝑥𝑥+cos 𝑥𝑥

(after L′Hospital′s Rule) = −0
1

= 0.  (Note that we kept applying L’Hospital’s Rule 

until we no longer had a form of ∞
∞

 or 0
0
.) 

 
 
 
INDETERMINATE PRODUCTS: 
 
Indeterminate products are a form of 0 ∙ ∞.  L’Hospital’s Rule does not apply to this form.  So we need 
to rewrite 𝑓𝑓 ∙ 𝑔𝑔 as either 𝑓𝑓

1/𝑔𝑔
 or 𝑔𝑔

1/𝑓𝑓
. 

 
(Note:  Sometimes it’s easy to see which one to put on top, and sometimes it’s more difficult.  As in the 
“guess and check” method for factoring, one can always try one way; and if it gets too crazy, rewrite it 
the other way and try again). 
 
 



EXAMPLE: 
 
lim
𝑥𝑥→∞

𝑥𝑥 𝑒𝑒−𝑥𝑥  is a form of ∞ ∙ 0, which is an indeterminate form (an indeterminate product more 

specifically), and we need to rewrite it in order to apply L’Hospital’s Rule.  This one is easy to see the 
rewrite lim

𝑥𝑥→∞
𝑥𝑥 𝑒𝑒−𝑥𝑥 = lim

𝑥𝑥→∞
𝑥𝑥
𝑒𝑒𝑥𝑥

 is the most natural.  Then, lim
𝑥𝑥→∞

𝑥𝑥
𝑒𝑒𝑥𝑥

= lim
𝑥𝑥→∞

1
𝑒𝑒𝑥𝑥

= 0 after applying L’Hospital’s 

Rule. 
 
 
EXAMPLE: 
 
lim
𝑥𝑥→0+

𝑥𝑥2 ln𝑥𝑥.  This is a form of 0 ∙ (−∞), which again needs to be rewritten.  In this case we rewrite 

lim
𝑥𝑥→0+

𝑥𝑥2 ln𝑥𝑥 = lim
𝑥𝑥→0+

ln 𝑥𝑥
1
𝑥𝑥2

. (We now have a form of −∞
∞

.   Notice we rewrite the 𝑥𝑥2 rather than ln 𝑥𝑥.  We 

do this by observing that 𝑑𝑑
𝑑𝑑𝑑𝑑
� 1
𝑥𝑥2
� will be easier to deal with than 𝑑𝑑

𝑑𝑑𝑑𝑑
� 1
ln 𝑥𝑥

�.)  Now, lim
𝑥𝑥→0+

ln 𝑥𝑥
1
𝑥𝑥2

=

lim
𝑥𝑥→0+

1
𝑥𝑥

−− 2
𝑥𝑥3

= − lim
𝑥𝑥→0+

𝑥𝑥2

2
= −0

2
= 0.  (Also note we had to approach 0 from the right in keeping with the 

domain for 𝑓𝑓(𝑥𝑥) = ln 𝑥𝑥). 
 
 
 
INDETERMINATE DIFFERENCES: 
 
Indeterminate differences are a form of ∞−∞.  These must also be algebraically manipulated to get a 
form of ∞

∞
  or 0

0
 , so that we may apply L’Hospital’s Rule.  (Frequently, we get a common denominator). 

 
 
EXAMPLE:   
 
lim
𝑥𝑥→0+

1
𝑥𝑥
− 2

𝑥𝑥2+𝑥𝑥
 is a form of ∞−∞.    We get a common denominator so we can apply L’Hospital’s Rule.   

lim
𝑥𝑥→0+

1
𝑥𝑥
− 2

𝑥𝑥2+𝑥𝑥
= lim

𝑥𝑥→0+
(𝑥𝑥+1)−2
𝑥𝑥2+𝑥𝑥

= lim
𝑥𝑥→0+

𝑥𝑥−1
𝑥𝑥2+𝑥𝑥

= lim
𝑥𝑥→0+

1
2𝑥𝑥+1

 (Using L′Hospital′s Rule) = 1
1

= 1. 

 
 
EXAMPLE: 
 
lim
𝑥𝑥→0

cot 𝑥𝑥 − csc𝑥𝑥  This is a form of ∞−∞.  Here, we will rewrite everything in terms of sines and 

cosines, and then proceed to get a common denominator:  lim
𝑥𝑥→0

cot 𝑥𝑥 − csc 𝑥𝑥 = lim
𝑥𝑥→0

cos 𝑥𝑥
sin𝑥𝑥

− 1
sin𝑥𝑥  

=

lim
𝑥𝑥→0

cos 𝑥𝑥−1
sin𝑥𝑥

  is now a form of 0
0
.  And, we actually calculated this limit in an above example and got 0. 

 
 
 



 
 
INDETERMINATE POWERS: 
 
We actually have three indeterminate powers.  They are the forms of: 

1) 00 
2) ∞0 
3) 1∞ 

 
These indeterminate powers require a little more massaging (or manipulation) to get them into a form 
in which we can apply L’Hospital’s Rule. 
 
We must take natural logarithms of both sides in order to use rules of logarithms:  After manipulating 
and finding the limit, we must raise the limit to the power of 𝑒𝑒 to undo what we did in the beginning. 
 
 
EXAMPLE: 
 
lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥  is a form of 00 .  We need to get it into a form of 0
0
 or ∞

∞
.  We let 𝑦𝑦 = lim

𝑥𝑥→0+ 
𝑥𝑥𝑥𝑥 .  We take 𝑙𝑙𝑙𝑙 of 

both sides to get:  ln 𝑦𝑦 = ln lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥 = lim
𝑥𝑥→0+ 

ln𝑥𝑥𝑥𝑥 , by limit law.  Then, lim
𝑥𝑥→0+ 

ln𝑥𝑥𝑥𝑥 = lim
𝑥𝑥→0+ 

𝑥𝑥 ln𝑥𝑥, by a 

rule of logarithms.  We now have an indeterminate product, which we rewrite as lim
𝑥𝑥→0+ 

ln 𝑥𝑥
1
𝑥𝑥

, which is now 

in a form of −∞
∞

.  We can now apply L’Hospital’s Rule to get:  lim
𝑥𝑥→0+ 

1
𝑥𝑥

− 1
𝑥𝑥2

= − lim
𝑥𝑥→0+ 

𝑥𝑥2

𝑥𝑥
= − lim

𝑥𝑥→0+ 
𝑥𝑥 = 0.   So 

we calculated  ln lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥 .  But we wanted lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥 .  We have ln𝑦𝑦 = ln lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥 = 0.  Therefore 

 𝑦𝑦 = lim
𝑥𝑥→0+ 

𝑥𝑥𝑥𝑥 = 𝑒𝑒0 = 1. 

 
 

 
 
 
 
 
 
 
 
 

 

 
 

 



 
 

NEWTON’S METHOD 
 

Newton’s Method is tacked onto the end of this section, because I believe it is best taught in 
conjunction with a mathematical computer programming class.  Doing these by hand is extremely 
inefficient.  I placed it here merely to introduce the concept, for the completeness of this text. 
 
Newton’s Method is an approximation method to find roots of functions.  For example, we are all very 
familiar with the quadratic equation to find roots of quadratic functions.  There are other such formulas 
up through degree 4 (though quite cumbersome).  For degree 5 or higher, there is none.  We also don’t 
have formulas for transcendental functions (like exponential, logarithmic, and trigonometric).   
 
We must start with an approximation of  𝑥𝑥1.   
 
Now we need to find a formula in terms of 𝑥𝑥1, for 𝑥𝑥2. 
 
We start by knowing the equation of the tangent line to 𝑓𝑓(𝑥𝑥) at 𝑥𝑥1 is: 
 
𝑦𝑦 − 𝑓𝑓(𝑥𝑥1) = 𝑓𝑓′(𝑥𝑥1)(𝑥𝑥 − 𝑥𝑥1) 
 
The 𝑥𝑥-intercept of the line is 𝑥𝑥2, so (𝑥𝑥2, 0) is a point on the tangent line. 
 
Then 0− 𝑓𝑓(𝑥𝑥1) = 𝑓𝑓′(𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1) is the equation of this line. 
 

Then (𝑥𝑥2 − 𝑥𝑥1) = − 𝑓𝑓(𝑥𝑥1)
𝑓𝑓′(𝑥𝑥1) ,  and 𝑥𝑥2 = 𝑥𝑥1 −

𝑓𝑓(𝑥𝑥1)
𝑓𝑓′(𝑥𝑥1) . 

 
We say 𝑥𝑥2 is the second approximation for our root. 
 

We keep going and get 𝑥𝑥3 = 𝑥𝑥2 −
𝑓𝑓(𝑥𝑥2)
𝑓𝑓′(𝑥𝑥2) . 

 

To generalize:  𝒙𝒙𝒏𝒏+𝟏𝟏 = 𝒙𝒙𝒏𝒏 −
𝒇𝒇(𝒙𝒙𝒏𝒏)
𝒇𝒇′(𝒙𝒙𝒏𝒏)  . 

 
Note that the larger 𝑛𝑛 gets, the closer we get to our root. 
 
You can now see that for any accuracy, this process will be very tedious.  The ensuing examples and 
exercises are left to a mathematical programming class, or for a programming worksheet. 

 

  



EXERCISES (For L’Hospital’s Rule): 
 
Find the following limits.  Use L’Hospital’s Rule whenever applicable:  (You can use an easier method if it 
saves time) 
 

1) lim
𝑥𝑥→∞

2𝑥𝑥+9
7𝑥𝑥−7

 

 
2) lim

𝑥𝑥→∞
𝑥𝑥

3𝑥𝑥−12
 

 

3) lim
𝑥𝑥→∞

3𝑥𝑥2+2𝑥𝑥
𝑥𝑥−8

 

 

4) lim
𝑥𝑥→∞

𝑥𝑥2−9𝑥𝑥+2
4𝑥𝑥2+6𝑥𝑥−7

 

 
5) lim

𝑥𝑥→∞
4𝑥𝑥−17

3𝑥𝑥2−12𝑥𝑥+2
 

 

6) lim
𝑥𝑥→∞

2𝑥𝑥3−9𝑥𝑥2+8
3𝑥𝑥3+12𝑥𝑥−9

 

 

7) lim
𝑥𝑥→∞

3𝑥𝑥2−9𝑥𝑥+2
𝑥𝑥3−7𝑥𝑥2+2𝑥𝑥−4

 

 

8) lim
𝑥𝑥→∞

𝑥𝑥3−19𝑥𝑥
𝑥𝑥−2

 

 

9) lim
𝑥𝑥→2+

𝑥𝑥3−19𝑥𝑥
𝑥𝑥−2

 

 

10) lim
𝑥𝑥→∞

√𝑥𝑥2−𝑥𝑥−1
𝑥𝑥+2

: 

 

11) lim
𝑥𝑥→∞

ln √𝑥𝑥
2𝑥𝑥

 

 

12) lim
𝑥𝑥→∞

ln 4𝑥𝑥
𝑥𝑥3

 

 

13) lim
𝑥𝑥→∞

𝑥𝑥2−19𝑥𝑥
𝑒𝑒2𝑥𝑥

 

 

14) lim
𝑥𝑥→0

𝑒𝑒4𝑥𝑥−1
3𝑥𝑥

 

 

15) lim
𝑥𝑥→0−

𝑒𝑒𝑥𝑥−2𝑥𝑥

𝑥𝑥2
 

 
16) lim

𝑥𝑥→0
cos 𝑥𝑥−1
2 sin 𝑥𝑥

 



17) lim
𝑥𝑥→𝜋𝜋

2

2 sin 𝑥𝑥−2
4 cos4𝑥𝑥

 

 
18) lim

𝑥𝑥→𝜋𝜋
2

𝑥𝑥 cos𝑥𝑥
sin 𝑥𝑥−1

 

 

19) lim
𝑥𝑥→∞

ln 𝑥𝑥4

𝑥𝑥2
 

 
20) lim

𝑥𝑥→0
2 sin 3𝑥𝑥−sin 5𝑥𝑥

4𝑥𝑥
 

 
21) lim

𝑥𝑥→∞
𝑥𝑥 𝑒𝑒−2𝑥𝑥 

 
22) lim

𝑥𝑥→∞
𝑥𝑥2𝑒𝑒−𝑥𝑥 

 
23) lim

𝑥𝑥→∞
𝑥𝑥 sin 2

𝑥𝑥
 

 
24) lim

𝑥𝑥→0+
𝑥𝑥 ln 𝑥𝑥 

 
25) lim

𝑥𝑥→0+
2𝑥𝑥3 ln𝑥𝑥2 

 

26) lim
𝑥𝑥→∞

𝑥𝑥
1
3 𝑒𝑒−𝑥𝑥2 

 
27) lim

𝑥𝑥→0+
ln 𝑥𝑥 sin 2𝑥𝑥 

 
28) lim

𝑥𝑥→0+
ln 𝑥𝑥2 tan 𝑥𝑥 

 
29) lim

𝑥𝑥→0+
3
𝑥𝑥2
− 1

𝑥𝑥+3
 

 
30) lim

𝑥𝑥→0+
2
𝑥𝑥
− 1

𝑥𝑥3+𝑥𝑥
 

 
31) lim

𝑥𝑥→0+
1
𝑥𝑥
− 2

2𝑥𝑥2+𝑥𝑥
 

 
32) lim

𝑥𝑥→0
2 cot 𝑥𝑥 − csc 2𝑥𝑥 

 
33) lim

𝑥𝑥→1+
3

𝑥𝑥2−1
− 2

ln 𝑥𝑥
 

 
34) lim

𝑥𝑥→0 
2

𝑒𝑒2𝑥𝑥−1
− 1

3𝑥𝑥
 

 



35) lim
𝑥𝑥→0+ 

𝑥𝑥2𝑥𝑥  

 
36) lim

𝑥𝑥→0+ 
𝑥𝑥𝑥𝑥2 

 

37) lim
𝑥𝑥→0+ 

(1 + sin𝑥𝑥)
1
𝑥𝑥 

 

38) lim
𝑥𝑥→∞ 

𝑥𝑥
2
𝑥𝑥 

 
39) lim

𝑥𝑥→∞ 
2𝑥𝑥𝑒𝑒−2𝑥𝑥  

 

  



CHAPTER 3 
SECTION 7 

ANTIDERIVATIVES: 
 

What is an antiderivative?  Well, if you think of the word “anti”, you usually think of its opposite.  We 
sometimes call an antiderivative a “backwards derivative”, meaning you do the opposite thing. 
 

Let’s look at this:  What is 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥2)?  It is 2𝑥𝑥.  How about 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥2 + 2)?  It is 2𝑥𝑥.  What about 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥2 + 107)?  It is 2𝑥𝑥.  How about 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥2 + 𝜋𝜋)?  Again, 2𝑥𝑥.  How about 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥2 + 𝐶𝐶),  where C is any 
constant?  Why, it is still 2𝑥𝑥.  So what do you think the antiderivative of 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 would be?  Do you 
see it is   𝑥𝑥2 + 𝐶𝐶?  I hope you can! 
 
DEFINITION: 
 
A function 𝐹𝐹 is called an antiderivative of 𝑓𝑓 on an interval 𝐼𝐼 if 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) for all 𝑥𝑥 in 𝐼𝐼. 
 
 
We recall from section 3.2, The Mean Value Theorem, that if 2 functions have the same derivatives on 𝐼𝐼, 
that they differ by a constant.  So, if 𝐹𝐹 and 𝐺𝐺 are any 2 antiderivatives of 𝑓𝑓, then 
 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) = 𝐺𝐺′(𝑥𝑥) →     𝐹𝐹(𝑥𝑥) − 𝐺𝐺(𝑥𝑥) = 𝐶𝐶 →     𝐹𝐹(𝑥𝑥) = 𝐺𝐺(𝑥𝑥) + 𝐶𝐶. 
 
 
THEOREM: 
 
Let 𝐹𝐹  be an antiderivative of 𝑓𝑓 on 𝐼𝐼, then the most general antiderivative of 𝑓𝑓 on 𝐼𝐼 is 𝑭𝑭(𝒙𝒙) + 𝑪𝑪, where 𝐶𝐶 
is an arbitrary constant. 
 
 
POWER RULE: 
 
Let’s start with the power rule.  Recall the derivative:  𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑥𝑥𝑛𝑛) = 𝑛𝑛𝑥𝑥𝑛𝑛−1.  What did we do?  We 

multiplied 𝑥𝑥 by the current exponent, 𝑛𝑛, then we subtracted a 1 from the exponent.  What is the 
opposite of subtraction?  Addition.  What is the opposite of multiplication?  Division.  So to take the 

antiderivative of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 ,  we get 𝑭𝑭(𝒙𝒙) = 𝒙𝒙𝒏𝒏+𝟏𝟏

𝒏𝒏+𝟏𝟏
.   Observe that we added 1 to the exponent, and 

divided by the new exponent. 
 
 
EXAMPLE: 
 
Let’s find the antiderivatives of the following functions:  (Some will use the power rule that we just 
derived.  Some will just be the opposite of the derivative that we know). 
 



1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
1
3.  Adding 1 to the exponent and dividing by the new exponent, we get  

𝐹𝐹(𝑥𝑥) =
𝑥𝑥
4
3

4
3

+ 𝐶𝐶 =
3
4
𝑥𝑥
4
3 + 𝐶𝐶. 

 

2) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥.   No power rule here.  But we know that 𝑑𝑑
𝑑𝑑𝑑𝑑

(sin𝑥𝑥) = cos𝑥𝑥.  Therefore, the 
antiderivative of 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥  must be 𝐹𝐹(𝑥𝑥) = sin𝑥𝑥 + 𝐶𝐶. 
 

3) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

.  Let’s try to apply the power rule here.  (You might be thinking wait!  𝑑𝑑
𝑑𝑑𝑑𝑑

(ln 𝑥𝑥) = 1
𝑥𝑥

.  
This is true, and we will get to it in a minute.  Many students will always try to apply the power 
rule anyway, because they forget this fact).  If we were to try to apply the power rule to 𝑓𝑓(𝑥𝑥) =
1
𝑥𝑥

, we first rewrite it as 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−1.  Then adding 1 to the exponent and dividing it out would 

give us 𝐹𝐹(𝑥𝑥) = 𝑥𝑥0

0
+ 𝐶𝐶.  Oops, we all know we can’t divide by zero.  Our function is undefined 

there.  This will hopefully be a big enough red flag, as to jolt us into recalling that this particular 

power of 𝑥𝑥 has a special rule, and remember the fact 𝑑𝑑
𝑑𝑑𝑑𝑑

(ln 𝑥𝑥) = 1
𝑥𝑥

.  Therefore, for 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥
→

   𝐹𝐹(𝑥𝑥) = ln|𝑥𝑥| + 𝐶𝐶.  Okay, you might now ask, why the absolute value signs?    Because the 
domain of 𝑓𝑓(𝑥𝑥) = ln 𝑥𝑥 is (0,∞), and the domain of 𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥
 is (−∞, 0) ∪ (0,∞).  We want the 

domains to match up, so we have an antiderivative with the same domain as 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

.  We see 
that 𝐹𝐹(𝑥𝑥) = ln |𝑥𝑥| also has domain   (−∞, 0) ∪ (0,∞), which you can observe in the graph 
below and left: 
 
Also observe the graph of  𝑓𝑓(𝑥𝑥) = 1

𝑥𝑥
 on the right (the derivative graph), and notice the 

symmetry, in how the left hand side is the negative of the right hand side. (I.e., observe how the 
derivative graph is correct for 𝑓𝑓(𝑥𝑥), showing where 𝑓𝑓 is increasing and decreasing). 
 
 

  
 

 So 𝐹𝐹(𝑥𝑥) = ln|𝑥𝑥| + 𝐶𝐶 gives us the correct antiderivative for the entire domain of 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

. 
 



4) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥 →     𝐹𝐹(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 𝐶𝐶.  We note that since 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥  is its own derivative, it is also its 
own antiderivative, plus a constant. 
 

5) 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 →     𝐹𝐹(𝑥𝑥) = 𝑎𝑎𝑥𝑥

ln 𝑎𝑎
+ 𝐶𝐶.  (We note that since 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑎𝑎𝑥𝑥) = 𝑎𝑎𝑥𝑥 ∙ ln𝑎𝑎, and that since division 

is the opposite of multiplication, that we divide out the ln𝑎𝑎 instead of multiplying it. )    
 

Let us now construct a table of antiderivatives: 
 
 
 
TABLE OF ANTIDERIVATIVES: 
 

Function Antiderivative 
𝑥𝑥𝑛𝑛 ,   𝑛𝑛 ≠ −1    𝑥𝑥𝑛𝑛+1

𝑛𝑛 + 1
+ 𝐶𝐶      

𝑒𝑒𝑥𝑥  𝑒𝑒𝑥𝑥 + 𝐶𝐶 
𝑎𝑎𝑥𝑥 𝑎𝑎𝑥𝑥

ln 𝑎𝑎  
+ 𝐶𝐶 

  
1
𝑥𝑥

 ln|𝑥𝑥| + 𝐶𝐶 

cos 𝑥𝑥 sin𝑥𝑥 + 𝐶𝐶 
sin𝑥𝑥 − cos 𝑥𝑥 + 𝐶𝐶 
sec2 𝑥𝑥 tan 𝑥𝑥 + 𝐶𝐶 
sec 𝑥𝑥 tan 𝑥𝑥 sec 𝑥𝑥 + 𝐶𝐶 

1
√1 − 𝑥𝑥2

 𝑠𝑠𝑠𝑠𝑛𝑛−1 𝑥𝑥 + 𝐶𝐶 

1
1 + 𝑥𝑥2

 tan−1 𝑥𝑥 + 𝐶𝐶 

cosh 𝑥𝑥 sinh𝑥𝑥 + 𝐶𝐶 
sinh𝑥𝑥 cosh 𝑥𝑥 + 𝐶𝐶 
𝑐𝑐𝑐𝑐(𝑥𝑥) 𝑐𝑐𝑐𝑐(𝑥𝑥) + 𝐶𝐶 
𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥) 𝐹𝐹(𝑥𝑥) ± 𝐺𝐺(𝑥𝑥) + 𝐶𝐶 

 
 
In the next examples, we will first find the general antiderivative (as we just practiced); but with 
additional conditions, we will be able to find the particular 𝐶𝐶 in each case. 
 
 
EXAMPLE: 
 

1) Find 𝑓𝑓 given 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 + 4, and given that 𝑓𝑓(0) = 3.   

First, we find 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3

3
− 𝑥𝑥2 + 4𝑥𝑥 + 𝐶𝐶:  How do we find 𝐶𝐶?  We substitute 𝑓𝑓(0) = 3, and 

algebraically solve for 𝐶𝐶:  0
3

3
− 02 − 4 ∙ 0 + 𝐶𝐶 = 3 →      𝐶𝐶 = 3.  Therefore,  



 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3

3
− 𝑥𝑥2 + 4𝑥𝑥 + 3. 

 

2) Find 𝑓𝑓 given 𝑓𝑓′′(𝑥𝑥) = sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 , and given that 𝑓𝑓′(0) = 1, 𝑓𝑓(0) = 0.   
 
First, we find 𝑓𝑓′(𝑥𝑥) = − cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 + 𝐶𝐶.  Now to find 𝐶𝐶:   
− cos 0 + 𝑒𝑒0 + 𝐶𝐶 = 1 →     −1 + 1 + 𝐶𝐶 = 0 →     𝐶𝐶 = 0.  Therefore,  𝑓𝑓′(𝑥𝑥) = − cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 .  
Next we find 𝑓𝑓(𝑥𝑥).    𝑓𝑓(𝑥𝑥) = − sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 + 𝐶𝐶.  Next, we find 𝐶𝐶:− sin 0 + 𝑒𝑒0 + 𝐶𝐶 = 0 →   𝐶𝐶 = 0 
Therefore, 𝑓𝑓(𝑥𝑥) = − sin𝑥𝑥 + 𝑒𝑒𝑥𝑥 . 
 

3) Find 𝑓𝑓 given 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥
1
3 − 2

𝑥𝑥
+ 4, and given that 𝑓𝑓(1) = 2.   

 

First, we find 𝑓𝑓(𝑥𝑥) = 3
4
𝑥𝑥
4
3 − 2 ln|𝑥𝑥| + 4𝑥𝑥 +𝐶𝐶.  Now to find 𝐶𝐶:   3

4
∙ 1

4
3 − 2 ln 1 + 4 ∙ 1 + 𝐶𝐶 = 2 →

3
4
− 0 + 4 + 𝐶𝐶 = 2 →     𝐶𝐶 = −11

4
.  Therefore, 𝑓𝑓(𝑥𝑥) = 3

4
𝑥𝑥
4
3 − 2 ln|𝑥𝑥| + 4𝑥𝑥 − 11

4
. 

 
 
 

PHYSICS: 
 
Next, we will derive the equations of motion for Physics, oftentimes referred to as the Kinematic 
Equations: 
 
We must first recall that 𝑣𝑣(𝑡𝑡) = 𝑠𝑠′(𝑡𝑡),   and that 𝑎𝑎(𝑡𝑡) = 𝑣𝑣′(𝑡𝑡) = 𝑠𝑠′′(𝑡𝑡),  where 𝑠𝑠(𝑡𝑡) is distance, 𝑣𝑣(𝑡𝑡) is 
velocity, and 𝑎𝑎(𝑡𝑡) is acceleration; and 𝑡𝑡 is the variable for time. 
 
We will now basically just go backwards. 
 
We begin with acceleration as a constant.  The constant acceleration to which we are referring is gravity, 
which we will label 𝑔𝑔.  (𝑔𝑔 is 9.8 𝑚𝑚/𝑠𝑠).  
 
𝒂𝒂(𝒕𝒕) = 𝒈𝒈 
 
Next, we take the antiderivative of 𝑎𝑎(𝑡𝑡) to get 𝑣𝑣(𝑡𝑡) = 𝑔𝑔 ∙ 𝑡𝑡 + 𝐶𝐶.  Let us rename 𝐶𝐶 as 𝑣𝑣0, a constant 
which will be our initial velocity. 
 
𝒗𝒗(𝒕𝒕) = 𝒈𝒈𝒈𝒈 + 𝒗𝒗𝟎𝟎 
 

Next, we take the antiderivative of 𝑣𝑣(𝑡𝑡) to get 𝑠𝑠(𝑡𝑡) = 𝑔𝑔𝑡𝑡2

2
+ 𝑣𝑣0𝑡𝑡 + 𝐶𝐶.  This time we will rename 𝐶𝐶 as 𝑠𝑠0, a 

constant that is our startingl distance at time 𝑡𝑡 = 0. 
 

𝒔𝒔(𝒕𝒕) =
𝟏𝟏
𝟐𝟐
𝒈𝒈𝒕𝒕𝟐𝟐 + 𝒗𝒗𝟎𝟎𝒕𝒕+ 𝒔𝒔𝟎𝟎.  



 
To summarize: 
 
𝒂𝒂(𝒕𝒕) = 𝒈𝒈 
𝒗𝒗(𝒕𝒕) = 𝒈𝒈𝒈𝒈 + 𝒗𝒗𝟎𝟎 

𝒔𝒔(𝒕𝒕) =
𝟏𝟏
𝟐𝟐
𝒈𝒈𝒕𝒕𝟐𝟐 + 𝒗𝒗𝟎𝟎𝒕𝒕+ 𝒔𝒔𝟎𝟎 

 
 
EXAMPLE: 
 
A particle is accelerating at a rate of 𝑎𝑎(𝑡𝑡) = 2𝑡𝑡 − 1.  Find functions for both the velocity and position 
when 𝑣𝑣(0) = 3, and 𝑠𝑠(0) = 2. 
 
𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 − 𝑡𝑡 + 𝐶𝐶.  Since 𝑣𝑣(0) = 3, 𝐶𝐶 = 3. 
𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 − 𝑡𝑡 + 3 
 

𝑠𝑠(𝑡𝑡) = 𝑡𝑡3

3
+ 𝑡𝑡2

2
+ 3𝑡𝑡 + 𝐶𝐶.  Since 𝑠𝑠(0) = 2, 𝐶𝐶 = 2. 

𝑠𝑠(𝑡𝑡) =
𝑡𝑡3

3
+
𝑡𝑡2

2
+ 3𝑡𝑡 + 2. 

 

  



EXERCISES: 
 
Find the general antiderivative for the following functions: 
 

1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 − 9 
 

2) 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 2𝑥𝑥 + 7 
 

3) 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥2 − 5𝑥𝑥 
 

4) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 + 4𝑥𝑥2 − 10𝑥𝑥 + 2 
 

5) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥4 + 3𝑥𝑥3 + 1
2
𝑥𝑥2 

 

6) 𝑓𝑓(𝑥𝑥) = √2𝑥𝑥3 − 𝑥𝑥
1
3 − 2

𝑥𝑥
 

 
7) 𝑓𝑓(𝑥𝑥) = sec2 𝑥𝑥 − 3𝑒𝑒𝑥𝑥 + 7 

 
8) 𝑓𝑓(𝑥𝑥) = 4

𝑥𝑥3
− √𝑥𝑥43 − 12𝑥𝑥 

 
9) 𝑓𝑓(𝑥𝑥) = sec 𝑥𝑥 tan𝑥𝑥 + 1

2
𝑒𝑒𝑥𝑥  

 
10) 𝑓𝑓(𝑥𝑥) = cos 𝑥𝑥 + 4 sin𝑥𝑥 − 1

2𝑥𝑥
 

 

11) 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥2−𝑥𝑥−1+𝑥𝑥
𝑥𝑥

 
 

12) 𝑓𝑓(𝑥𝑥) = √𝑥𝑥−2𝑥𝑥+𝑥𝑥−3

𝑥𝑥2
 

 
13) 𝑓𝑓(𝑥𝑥) = 1

√1−𝑥𝑥2
− 3

1+𝑥𝑥2
 

 
14) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 2)(𝑥𝑥 + 5) 

 
15) 𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 + 3)(𝑥𝑥 − 7) 

 
16) 𝑓𝑓(𝑥𝑥) = 3𝑒𝑒𝑥𝑥 − 4

𝑥𝑥
+ 1

1+𝑥𝑥2
 

 

17) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥
2
3 − 3

𝑥𝑥
1
3

+ 15 

 
 
 



Find 𝑓𝑓: 
 

18) 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥 + 2,   𝑓𝑓(0) = 2. 
 

19) 𝑓𝑓′(𝑥𝑥) = 3𝑥𝑥2 − 12𝑥𝑥 + 7,   𝑓𝑓(1) = 1 
 

20) 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥3 − 6𝑥𝑥2 + 3𝑥𝑥,   𝑓𝑓(0) = 4 
 

21) 𝑓𝑓′(𝑥𝑥) = 5𝑥𝑥4 + 9𝑥𝑥2 + 2𝑥𝑥,   𝑓𝑓(1) = 2 
 

22) 𝑓𝑓′(𝑥𝑥) = sin𝑥𝑥 − cos 𝑥𝑥,   𝑓𝑓(0) = 1 
 

23) 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 + 𝑥𝑥2 , 𝑓𝑓(0) = 2 
 

24) 𝑓𝑓′(𝑥𝑥) = 𝑒𝑒𝑥𝑥 − cos 𝑥𝑥,   𝑓𝑓(0) = 3 
 

25) 𝑓𝑓′(𝑥𝑥) = sec2 𝑥𝑥 − 2𝑒𝑒𝑥𝑥 ,   𝑓𝑓(0) = 0 
 

26) 𝑓𝑓′(𝑥𝑥) = sec 𝑥𝑥 tan𝑥𝑥 − 2𝑥𝑥,   𝑓𝑓(0) = 4 
 

27) 𝑓𝑓′′(𝑥𝑥) = 𝑥𝑥 − 7,   𝑓𝑓′(1) = 1, 𝑓𝑓(0) = 2 
 

28) 𝑓𝑓′′(𝑥𝑥) = 𝑥𝑥2 − 2𝑥𝑥 + 1,   𝑓𝑓′(0) = 2, 𝑓𝑓(1) = 1 
 

29) 𝑓𝑓′′(𝑥𝑥) = 4𝑥𝑥3 + √𝑥𝑥 − 𝑥𝑥3 , 𝑓𝑓′(0) = 0, 𝑓𝑓′′(0) = 0 
 

30) 𝑓𝑓′′(𝑥𝑥) = (𝑥𝑥 + 1)(𝑥𝑥 − 2),   𝑓𝑓′(0) = 1,   𝑓𝑓′′(1) = 0 
 

31) 𝑓𝑓′(𝑥𝑥) = 𝑥𝑥2−2
𝑥𝑥

, 𝑓𝑓′(1) = 0 
 

32) 𝑓𝑓′′(𝑥𝑥) = 1
1+𝑥𝑥2

− cos 𝑥𝑥,   𝑓𝑓′(0) = 0,   𝑓𝑓(0) = 1 
 

33) 𝑓𝑓′′(𝑥𝑥) = 𝑥𝑥
1
3 − 1

𝑥𝑥2
− 2𝑥𝑥, 𝑓𝑓′(1) = 0, 𝑓𝑓(1) = 0 

 

 

34) A particle is accelerating at a rate of 𝑎𝑎(𝑡𝑡) = 𝑡𝑡 + 1.  Find functions for both the velocity and 
position when 𝑣𝑣(0) = 2, and 𝑠𝑠(0) = 5. 
 

35) A particle is accelerating at a rate of 𝑎𝑎(𝑡𝑡) = 𝑡𝑡2 − 1.  Find functions for both the velocity and 
position when 𝑣𝑣(0) = 0, and 𝑠𝑠(0) = 10. 
 

 



CHAPTER 4 
SECTION 1 

AREA APPROXIMATION 
 
 

In this section, we discover how to find the area below a curve, and above the 𝑥𝑥-axis. 
 
We begin with some familiar examples, and these were also discussed in Chapter 0: 
 

We can easily find the area under the curve for functions like 𝑦𝑦 = 2, which is simply the area of a 
rectangle, 𝑏𝑏ℎ; or for a function like 𝑦𝑦 = 𝑥𝑥, which would be the area of a triangle, 1

2
𝑏𝑏ℎ.  See the graphs 

below. 

 

 

 

 

We can easily calculate the area under the curve (and above the x-axis) of these functions using basic 
geometry. 

 



 

But now let’s look at another fairly simple function: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1 from 𝑥𝑥 = 0 to 𝑥𝑥 = 4: 

 

 

We recall from Chapter 0, that we briefly discussed how difficult the process might be.  We just 
observed above, how easy it was to find the area of a rectangle.  What if we approximated the area of 
this function instead of finding its precise area.  We could use rectangles to approximate it. 

 

 

We can see by the pictures above how this could be accomplished.  We notice that the graph on the left 
would give an underestimate of the area, and the graph on the right would give an overestimate. 

It is also apparent that by using only 4 rectangles, we will get a terrible approximation.  But what if we 
had 100,000 rectangles?  This would be an excellent approximation, while being a calculational 
nightmare. 

 

Let us go ahead and approximate the area under the curve by calculating the area of the rectangles in 
each graph: 

First, we recall the area of a rectangle is width times height.  Here each width is the same, but each 
height is different.  The width will be Δ𝑥𝑥 = 𝑏𝑏−𝑎𝑎

𝑛𝑛
,  where [𝑎𝑎, 𝑏𝑏] is the interval in the 𝑥𝑥-direction, and 𝑛𝑛 is 



the number of rectangles.  𝑓𝑓(𝑥𝑥𝑖𝑖) is the height of each rectangle, where 𝑥𝑥𝑖𝑖  is the 𝑖𝑖th 𝑥𝑥-value that touches 
the graph.  (𝑖𝑖 is arbitrary). 

So the approximate area under the curve and above the 𝑥𝑥-axis is:  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥.𝑛𝑛
𝑖𝑖=1   This formula is called a 

Riemann Sum, named after Georg Friedrich Bernhard Riemann, who lived 1826-1866, and was a German 
mathematician who made contributions to analysis, number theory, and differential geometry.  (Note, 
technically 𝑥𝑥𝑖𝑖  should be denoted as 𝑥𝑥𝑖𝑖∗, but I find this notation too cumbersome for most students.  It 
implies that each 𝑥𝑥-value can touch the graph anywhere within the rectangle including its endpoints). 

This formula may look very novel and unusual!  Let’s break it all down. 

First, Σ simply means “sum”!  It’s an abbreviation for writing out each term of a sum (very convenient, 
especially if the sum has many terms).  𝑖𝑖 is an index.  It goes from 1 to n, i.e. 1,2,3,…,n.  𝑥𝑥𝑖𝑖  is an arbitrary 
𝑥𝑥-value in which its rectangle touches the graph.  𝑓𝑓(𝑥𝑥𝑖𝑖) is the height of the “𝑖𝑖th” rectangle.  Δ𝑥𝑥 is the 
width of each rectangle.  For our purposes, they will all be equal, and as mentioned previously, Δ𝑥𝑥 =
𝑏𝑏−𝑎𝑎
𝑛𝑛

. 

 

Let us now use this formula to approximate the area of our example:  

 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1 from 𝑥𝑥 = 0 to 𝑥𝑥 = 4, using the graph on the left, i.e. using left endpoints: 

We observe that the area is approximated using 4 rectangles, so 𝑛𝑛 = 4 here.  Δ𝑥𝑥 = 𝑏𝑏−𝑎𝑎
𝑛𝑛

= 4−0
4

= 1.  So 

now we have:  

 ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥 =   ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖) ∙ 14
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 .  Now let’s write out all our terms:  First we find our 𝑥𝑥-values: 

 𝑥𝑥1 = 0, 𝑥𝑥2 = 1, 𝑥𝑥3 = 2, 𝑥𝑥4 = 3.  How did we find these?  𝑥𝑥1 is the first 𝑥𝑥-value in which the function 
touches the graph.  This occurs at 𝑥𝑥 = 0.  The second one occurs at 𝑥𝑥 = 1, etc.  There are 4 rectangles, 
and there are 4 𝑥𝑥-values here.  Note that we do not have an 𝑥𝑥-value = 4.  (This is a common student 
error).  We have only 4 rectangles, starting with 𝑥𝑥 = 0.  (Hint, for the graph on the right, we will have an 
𝑥𝑥 = 4, but no 𝑥𝑥 = 0.  Again, giving us 4 rectangles). 

So  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥 =   ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖) ∙ 14
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 =    

 [𝑓𝑓(0) + 𝑓𝑓(1) + 𝑓𝑓(2) + 𝑓𝑓(3)] ∙ 1 =    

 [(02 + 1) + (12 + 1) + (22 + 1) + (32 + 1)] ∙ 1 = 

1 + 2 + 5 + 10 = 18.  Recall this will be an underestimate of the area. 

 

Next, we use the graph on the right using right endpoints.  We still have 4 rectangles, so our Δ𝑥𝑥 remains 
the same.  Now  𝑥𝑥1 = 1, 𝑥𝑥2 = 2, 𝑥𝑥3 = 3, 𝑥𝑥4 = 4.  And: 

�𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥 =   �𝑓𝑓(𝑥𝑥𝑖𝑖) ∙ 1 =
4

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

[𝑓𝑓(1) + 𝑓𝑓(2) + 𝑓𝑓(3) + 𝑓𝑓(4)] ∙ 1 =    



 [(12 + 1) + (22 + 1) + (32 + 1) + (42 + 1)] ∙ 1 = 

2 + 5 + 10 + 17 = 34.  Recall this will be an overestimate of the area. 

 

Observe that these are terrible approximations, but they serve to get the general ideas across without 
having to do brutal calculations by hand.  Like Newton’s Method, if approximations are needed, they are 
best done on computer software where hundreds of thousands of calculations can be done in an 
instant. 

 

To Summarize:  We approximated the area under a curve of a function over an interval, and above the 
𝑥𝑥-axis, using rectangles.  We first used left endpoints, and then we recalculated using right endpoints.  
We could have used the middle of each rectangle, instead of the left or right-hand corner, and this 
method is called the Midpoint Rule. This generally gives a better approximation. We also have a method 
called the Trapezoid Rule, which uses trapezoids in lieu of rectangles to get an even better 
approximation, or Simpson’s Rule which uses parabolas.  I feel these methods are best used with 
computer software.  I have also discovered with modern computers, you can simply  use more 
rectangles, and it will give approximations as good as any method.  This is due to the fact that since 
modern computers are now so powerful, you can write a simple program using millions rectangles that 
will calculate an answer nearly instantaneously.   

 

EXAMPE: 

Take a look at the graph below to see a better representation of approximating an area using rectangles. 

 

EXAMPLE: 

To become a little more familiar with the summation notation, let us write the following sums using 
summation notation: 

1 + 2 + 3 + 4 + 5 = �𝑖𝑖
5

𝑖𝑖=1

 

 

𝑓𝑓(1) + 𝑓𝑓(2) + 𝑓𝑓(3) = �𝑓𝑓(𝑖𝑖)
3

𝑖𝑖=1

 



EXERCISES: 

 

Use summation notation to rewrite the following sums: 

1) 2 + 4 + 6 + 8 + 10 + 12 
 

2) 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑥𝑥1) + 𝑓𝑓(𝑥𝑥2) + 𝑓𝑓(𝑥𝑥3) 
 

3) 1 + 3 + 5 + 9 + 11 + 13 + 15 + 17 
 

Rewrite the following sums without summation notation (i.e. write out all the terms): 
 

4) ∑ 𝑖𝑖25
𝑖𝑖=1  

 
5) ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)3

𝑖𝑖=1  
 

6) ∑ (1 + 𝑖𝑖)4
𝑖𝑖=1  

 
Use a) left endpoints and b) right endpoints to approximate the area under the curve (and above the 𝑥𝑥-
axis) of the following functions over the given interval using 4 rectangles: 
 

7) 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥

, [1,5] 
 

8) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 , [0,4] 
 

9) 𝑓𝑓(𝑥𝑥) = sin𝑥𝑥,   [0,𝜋𝜋] 
 

  



CHAPTER 4 
SECTION 2 

THE DEFINITE INTEGRAL 
 

In Section 1, we approximated the area under a curve, and above the 𝑥𝑥-axis, with the Riemann Sum,   
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥.𝑛𝑛
𝑖𝑖=1   We found that it may or may not be a very good approximation for the area, depending 

on the number of rectangles used.  What if we had an infinite amount of rectangles?  It is fairly easy to 
imagine that this would give us an accurate representation of the area.  We now have an infinite 
number of rectangles, which implies all the widths, i.e. Δ𝑥𝑥, are going to zero. 
 
We now define the area under the curve and above the 𝑥𝑥-axis, over an interval 𝐼𝐼  to be as such: 
 
Let 𝑓𝑓 be continuous on a closed interval 𝐼𝐼 = [𝑎𝑎, 𝑏𝑏], then the area bounded by 𝑓𝑓(𝑥𝑥) ≥ 0, the 𝑥𝑥-axis, and 
the lines 𝑥𝑥 = 𝑎𝑎, 𝑥𝑥 = 𝑏𝑏 is as follows: 
 
𝑨𝑨 = 𝐥𝐥𝐥𝐥𝐥𝐥

𝒏𝒏→∞
  ∑ 𝒇𝒇(𝒙𝒙𝒊𝒊)𝚫𝚫𝒙𝒙,𝒏𝒏

𝒊𝒊=𝟏𝟏  provided the limit exists. 

 
 
DEFINITION OF A DEFINITE INTEGRAL: 
 
If 𝑓𝑓 is defined on a closed interval [𝑎𝑎, 𝑏𝑏], which is divided into 𝑛𝑛 subintervals of equal width 𝑏𝑏−𝑎𝑎

𝑛𝑛
, and 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛 are the sample points of the subintervals, then the definite integral of 𝑓𝑓 from 𝑎𝑎 to 𝑏𝑏, is 

∫ 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅 = 𝐥𝐥𝐥𝐥𝐥𝐥
𝒏𝒏→∞

  ∑ 𝒇𝒇(𝒙𝒙𝒊𝒊)𝚫𝚫𝒙𝒙,𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒃𝒃
𝒂𝒂  provided the limit exists, (and gives the same value for all choices of 

sample points).  If these facts hold true, we say 𝑓𝑓 is integrable on [𝑎𝑎, 𝑏𝑏]. 
 

Let’s look at the notation:  ∫ 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅𝒃𝒃
𝒂𝒂 :  This reads:  “The integral from 𝒂𝒂 to 𝒃𝒃 of 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅".  Note that 𝑎𝑎, 𝑏𝑏 

are the endpoints of the interval.  𝑓𝑓 is the height, and 𝑑𝑑𝑑𝑑 is the width.  Also note that 𝑑𝑑𝑑𝑑 is very small, in 
fact, it is infinitesimally small.  (Note, the integral symbol ∫was invented by Leibnitz, whom we have 
previously discussed). 

We observe that 𝑎𝑎 and 𝑏𝑏 are called the “limits of integration”, with 𝑎𝑎 being the lower limit, and 𝑏𝑏 being 
the upper limit. 

 

NOTE ON FUNCTIONS OVER AN INTERVAL THAT OCCUR BOTH ABOVE AND BELOW THE X-AXIS: 

So far we have understood area to be ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = lim
𝑛𝑛→∞

  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥,𝑛𝑛
𝑖𝑖=1

𝑏𝑏
𝑎𝑎  which means the area below  

𝑓𝑓(𝑥𝑥) and above the 𝑥𝑥-axis over the interval [𝑎𝑎, 𝑏𝑏].  But what happens if a function has both positive and 
negative values over the interval?  We sum the rectangles above the 𝑥𝑥-axis, and the negatives of the 
sums below the 𝑥𝑥-axis, to obtain what we refer to as “net area”.  E.g.,  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐴𝐴2 − 𝐴𝐴1,𝑏𝑏

𝑎𝑎  where 𝐴𝐴2 
represents the area above the 𝑥𝑥-axis, and 𝐴𝐴1 represents the area below the 𝑥𝑥-axis.  We note that, we do 
NOT have a negative area.  The integral represents the area above the 𝑥𝑥-axis minus the area below the 



𝑥𝑥-axis.  It does not mean the area itself is negative.  It means the NET area can be positive, negative, or 
zero; depending on how much is above, and how is below the 𝑥𝑥-axis. 

 

 

FORMULAS FOR EVALUATING INTEGRALS: 

1) We begin with ∫ 𝒇𝒇(𝒙𝒙)𝒅𝒅𝒅𝒅 = 𝒍𝒍𝒍𝒍𝒍𝒍
𝒏𝒏→∞

  ∑ 𝒇𝒇(𝒙𝒙𝒊𝒊)𝜟𝜟𝜟𝜟𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒃𝒃
𝒂𝒂  

 

2) To evaluate number 1), we will need 𝚫𝚫𝒙𝒙 = 𝒃𝒃−𝒂𝒂
𝒏𝒏

, 
 

3) We also need 𝒙𝒙𝒊𝒊 = 𝒂𝒂 + 𝒊𝒊𝚫𝚫𝒙𝒙 
 

We also need formulas for powers of positive integers: 
 

4) ∑ 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

𝑛𝑛
𝑖𝑖=1  

 

5) ∑ 𝑖𝑖2 = 𝑛𝑛(𝑛𝑛+1)(2𝑛𝑛+1)
6

𝑛𝑛
𝑖𝑖=1  

 

6) ∑ 𝑖𝑖3 = �𝑛𝑛(𝑛𝑛+1)
2

�
2

𝑛𝑛
𝑖𝑖=1  

 
And, we will need some reminders: 
 
7) ∑ 𝑐𝑐 = 𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖=1 ,  where 𝑐𝑐 is a constant 
  

8) ∑ 𝑐𝑐𝑎𝑎𝑖𝑖 = 𝑐𝑐𝑛𝑛
𝑖𝑖=1 ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1  
 

9) ∑ 𝑎𝑎𝑖𝑖 ± 𝑏𝑏𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖 ± ∑ 𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝒏𝒏
𝒊𝒊=𝟏𝟏  

 
 
EXAMPLE: 
 
Let us find ∫ (𝑥𝑥2 + 1)𝑑𝑑𝑑𝑑4

0 , i.e. find the area for the problem we approximated in Section 1. 
 
∫ (𝑥𝑥2 + 1)𝑑𝑑𝑑𝑑4
0 = lim

𝑛𝑛→∞
∑ �𝑥𝑥𝑖𝑖2 + 1�Δ𝑥𝑥.𝑛𝑛
𝑖𝑖=1    



Now, we have Δ𝑥𝑥 = 4−0
𝑛𝑛

= 4
𝑛𝑛

.   
 

We have 𝑥𝑥𝑖𝑖 = 𝑎𝑎 + 𝑖𝑖Δ𝑥𝑥 = 0 + 𝑖𝑖 ∙ 4
𝑛𝑛

= 4𝑖𝑖
𝑛𝑛

.  
  

So lim
𝑛𝑛→∞

∑ �𝑥𝑥𝑖𝑖2 + 1�Δ𝑥𝑥 = lim
𝑛𝑛→∞

∑ ��4𝑖𝑖
𝑛𝑛
�
2

+ 1� ∙ 4
𝑛𝑛

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  

 

lim
𝑛𝑛→∞

��
16𝑖𝑖2

𝑛𝑛2
+ 1� ∙

4
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

= 

 

lim
𝑛𝑛→∞

∑ �4
𝑛𝑛

+ 64𝑖𝑖2

𝑛𝑛3
�𝑛𝑛

𝑖𝑖=1 =  (By sum formula 9) and limit law 1) ): = 

 

lim
𝑛𝑛→∞

∑ 4
𝑛𝑛

+ lim
𝑛𝑛→∞

∑ 64𝑖𝑖2

𝑛𝑛3
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 =  (By sum formulas 7) and 8) ): = 

 

lim
𝑛𝑛→∞

4
𝑛𝑛
∙ 𝑛𝑛 + lim

𝑛𝑛→∞

64
𝑛𝑛3
�𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

 
 
Now, we must use our summation formula for 𝑖𝑖2: 
 

We substitute ∑ 𝑖𝑖2 = 𝑛𝑛(𝑛𝑛+1)(2𝑛𝑛+1)
6

𝑛𝑛
𝑖𝑖=1   into the above expression: 

4 + lim
𝑛𝑛→∞

64
𝑛𝑛3
�𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= 

4 + lim
𝑛𝑛→∞

64
𝑛𝑛3

∙ �
𝑛𝑛(𝑛𝑛 + 1)(2𝑛𝑛 + 1)

6
� = 

4 +
128

6
= 4 +

64
3

=
76
3

. 

 

Note:  Recall from the previous section, that when we approximated this area using 4 rectangles, we got 
18 for the underestimate, and 34 for the overestimate.  76

3
= 25 1

3
 which falls really close to the midpoint 

between these values.  If we had used the midpoint rule, we would have gotten a more reasonable 
answer only using 4 rectangles. 

 

 

 



PROPERTIES OF THE DEFINITE INTEGRAL: 

 

1) ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = −∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑎𝑎
𝑏𝑏

𝑏𝑏
𝑎𝑎  

 
2) ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 0𝑎𝑎

𝑎𝑎  
 

3) ∫ 𝑐𝑐 𝑑𝑑𝑑𝑑 = 𝑐𝑐 (𝑏𝑏 − 𝑎𝑎)𝑏𝑏
𝑎𝑎  

 

4) ∫ [𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥)] 𝑑𝑑𝑥𝑥 = ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 + ∫ 𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎  

 
5) ∫ 𝑐𝑐 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝑐𝑐 ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎
𝑏𝑏
𝑎𝑎  

 

6) ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑐𝑐
𝑎𝑎 + ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑐𝑐 = ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎   (provided 𝑎𝑎 < 𝑐𝑐 < 𝑏𝑏) 

 
7) If 𝑓𝑓(𝑥𝑥) ≥ 0 for 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 ≥ 0 
 

8) If 𝑓𝑓(𝑥𝑥) ≥ 𝑔𝑔(𝑥𝑥) for 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 ≥ ∫ 𝑔𝑔(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎  
 
 

EXAMPLE: 
 
Let’s use the properties of integrals to evaluate ∫ (4𝑥𝑥2 + 7) 𝑑𝑑𝑑𝑑:4

0  

First, we will use properties 3) and 4), to rewrite ∫ (4𝑥𝑥2 + 7) 𝑑𝑑𝑑𝑑4
0  as 4∫ (𝑥𝑥2 + 1) 𝑑𝑑𝑑𝑑 + ∫ 3 𝑑𝑑𝑑𝑑.4

0
4
0  

∫ 340 𝑑𝑑𝑑𝑑 = 3 ∙ 4 = 12 by property 3).  (We also observe why property 3 works: It is the area of a 
rectangle).   

You might wonder why we broke up the integral in this exact manner.  We did it, because we calculated 

∫ (𝑥𝑥2 + 1) 𝑑𝑑𝑑𝑑4
0 = 76

3
 in the previous example; and we can use that result here. 

 
Therefore, ∫ (4𝑥𝑥2 + 7) 𝑑𝑑𝑑𝑑 = 12 + 4 ∙ 76

3
= 340

3
.4

0  
 
 
EXAMPLE:   
 
If ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 3,2

1   and 2∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 2,7
2  what is ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑7

1 ?  Using properties 4) and 5):  

 ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑7
1 = 3 + 2

2
= 4. 

 
 



EXERCISES: 
 

Rewrite the following limits as definite integrals: 

 
1) lim

𝑛𝑛→∞
∑ �3𝑥𝑥𝑖𝑖5 + 11𝑥𝑥𝑖𝑖3�Δ𝑥𝑥,   [1,2]𝑛𝑛
𝑖𝑖=1  

 

2) lim
𝑛𝑛→∞

∑ ��𝑥𝑥𝑖𝑖2 − 3�Δ𝑥𝑥,   [3,5]𝑛𝑛
𝑖𝑖=1  

 

3) lim
𝑛𝑛→∞

∑ �𝑒𝑒2𝑥𝑥𝑖𝑖 + 𝑥𝑥
1
3� Δ𝑥𝑥,    [0,1]𝑛𝑛

𝑖𝑖=1  

 
4) lim

𝑛𝑛→∞
∑ �sin𝑥𝑥𝑖𝑖2 + 1�Δ𝑥𝑥,    [0,𝜋𝜋]𝑛𝑛
𝑖𝑖=1  

 
 

 

Use the definition of the integral to evaluate the following:  (Hint:  this is the limit of the Riemann Sum): 

 
5) ∫ (𝑥𝑥 − 1) 𝑑𝑑𝑑𝑑2

0  
 

6) ∫ (2𝑥𝑥 + 1) 𝑑𝑑𝑑𝑑2
1  

 
7) ∫ (𝑥𝑥2 + 𝑥𝑥) 𝑑𝑑𝑑𝑑2

0  
 

8) ∫ (𝑥𝑥2 − 1) 𝑑𝑑𝑑𝑑2
1  

 

9) ∫ (𝑥𝑥2 − 𝑥𝑥 + 1) 𝑑𝑑𝑥𝑥2
1  

 
 

Evaluate the following integrals by combining the properties for definite integrals along with your 
knowledge of areas: 

 

10) ∫ (𝑥𝑥 − 1) 𝑑𝑑𝑑𝑑2
1   (Hint: You should get the same answer you did in number 5) with less work!) 

 

11) ∫ (2𝑥𝑥 + 1) 𝑑𝑑𝑑𝑑2
1     (Hint: You should get the same answer you did in number 6) with less 

work!) 
 

12)   ∫ �4 + √1 − 𝑥𝑥2� 𝑑𝑑𝑑𝑑1
−1  



 
 

Use properties of definite integrals to evaluate the integrals: 

13) If ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 5,2
0   and 3∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 9,4

2  what is ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑4
0 ? 

 
14) If ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 8,7

0   and 3∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 3,4
0  what is ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑7

4 ? 
 

  



CHAPTER 4 
SECTION 3 

THE FUNDAMENTAL THEOREM OF CALCULUS 
 

So there are two Fundamental Theorems of Calculus.  They are called the First Fundamental Theorem of 
Calculus, and the Second Fundamental Theorem of Calculus.  Some texts label them the opposite of 
other texts. 
 
I would like to start with the one I feel follows best from what we just learned.  Since I will present this 
first, I will call it The First Fundamental Theorem of Calculus, by default. 
 
Let us review what we have learned thus far in this chapter:  We first learned that we could approximate 
an area with a Riemann Sum:  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥𝑛𝑛

𝑖𝑖=1  in Section 1.  We then learned that we could find the actual 
area by taking the limit:  lim

𝑛𝑛→∞
  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥,𝑛𝑛

𝑖𝑖=1  in Section 2.  We also learned in Section 2, that the 

definition of the definite integral was this limit:  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = lim
𝑛𝑛→∞

  ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖)Δ𝑥𝑥.𝑛𝑛
𝑖𝑖=1

𝑏𝑏
𝑎𝑎   Next, we calculated 

the integral by using the limit definition, and used some sum formulas to calculate the limit.  We did a 
simple example, and some simple exercises to perform this task.  We noticed that, even with the 
simplest exercises, this task became quite cumbersome and tedious.  Imagine if we had to do much 
more complicated integrals?  E.g., even a slightly higher polynomial would become quite tedious very 
quickly. 
 
Next, to warm up to the idea of the First Fundamental Theorem of Calculus, let’s view some examples 
from the lens of area: 
 

 
Let’s call the width 𝑥𝑥, and the height 𝑚𝑚:  We note the area is 𝐴𝐴 = 𝑚𝑚𝑚𝑚 
 
 
 
 
 
 
 



 
Let us now graph the new function:  𝑓𝑓 = 𝑚𝑚𝑚𝑚: 
 

 
Let’s calculate this area:  𝐴𝐴 = 1

2
 𝑙𝑙 ∙ 𝑤𝑤 = 1

2
 𝑚𝑚𝑚𝑚 ∙ 𝑥𝑥 = 𝑚𝑚𝑥𝑥2

2
 

 
Perhaps you notice a pattern.  The area of the rectangle 𝑓𝑓 = 𝑚𝑚 was 𝑚𝑚𝑚𝑚. 

The area of “that area function”  was 𝑚𝑚𝑥𝑥2

2
.  Do you notice that each area was the antiderivative of the 

function?  Can you guess the area of the function:  𝑓𝑓 = 𝑚𝑚𝑥𝑥2

2
?  Hopefully you guessed it would be 𝑚𝑚𝑥𝑥3

6
.  

That would be correct.  Recall we learned about antiderivatives in Chapter 3.7.   
 
This awakens us to the idea behind the First Fundamental Theorem of Calculus, which we will formalize 
and prove below: 
 
 
THE FIRST FUNDAMENTAL THEOREM OF CALCULUS: 
 
If 𝑓𝑓 is continuous on the closed interval [𝑎𝑎, 𝑏𝑏],  then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎),𝑏𝑏

𝑎𝑎  where 𝐹𝐹 is any 
antiderivative of 𝑓𝑓 →    𝐹𝐹′ = 𝑓𝑓. 
 
(We recall ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎  is the area under the curve over [𝑎𝑎, 𝑏𝑏],  and 𝐹𝐹 is the antiderivative of 𝑓𝑓).  (Also 
note that we evaluate 𝐹𝐹 at the endpoints to find the area). 
 
PROOF: 
 
We start by writing 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) in a different form.  Let us partition the interval [𝑎𝑎, 𝑏𝑏] into: 
 
𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1, 𝑥𝑥2 < ⋯ < 𝑥𝑥𝑛𝑛−1 < 𝑥𝑥𝑛𝑛 = 𝑏𝑏. 
 
Next, we can write 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) as pairwise addition and subtraction: 
 
𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) = 𝐹𝐹(𝑥𝑥𝑛𝑛) − 𝐹𝐹(𝑥𝑥𝑛𝑛−1) + 𝐹𝐹(𝑥𝑥𝑛𝑛−1) −⋯− 𝐹𝐹(𝑥𝑥1) + 𝐹𝐹(𝑥𝑥1) − 𝐹𝐹(𝑥𝑥0) = 



∑ [(𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐹𝐹(𝑥𝑥𝑖𝑖−1)]𝑛𝑛
𝑖𝑖=1 . 

 
Now we apply the Mean Value Theorem to show there exists a number 𝑐𝑐 such that 
 

𝐹𝐹′(𝑐𝑐𝑖𝑖) = 𝐹𝐹(𝑥𝑥𝑖𝑖)−𝐹𝐹(𝑥𝑥𝑖𝑖−1)
𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1

 , where 𝑐𝑐𝑖𝑖  is in the 𝑖𝑖th subinterval (recall 𝑖𝑖 can be any of 𝑖𝑖 = 0,1,2, … ,𝑛𝑛, i.e. It is 

arbitrary).  
 
We know we can write 𝐹𝐹′(𝑐𝑐𝑖𝑖) as 𝑓𝑓(𝑐𝑐𝑖𝑖), and we let Δ𝑥𝑥 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 .  (Which simply means Δ𝑥𝑥 is the 
change in 𝑥𝑥 in one of these subintervals). 
 
Therefore, 𝐹𝐹(𝑏𝑏)− 𝐹𝐹(𝑎𝑎) = ∑ 𝑓𝑓(𝑐𝑐𝑖𝑖)Δ𝑥𝑥.𝑛𝑛

𝑖𝑖=1  
 
This means you can keep applying the Mean Value Theorem to find a collection of 𝑐𝑐𝑖𝑖′s 
 So that 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) is a Riemann sum of 𝑓𝑓 on [𝑎𝑎, 𝑏𝑏] for any partition. 
 
Observe what we are doing:  We are finding the area of a rectangle and adding all the areas together.  
Each rectangle describes an approximation of the curve of the section it is placed under.  We also note 
that the width of the rectangles do not have to be the same.  Recall, in the previous section that we 
discussed the more rectangles, the better the approximation.  When we had an infinite number of 
rectangles; i.e., we took the limit as 𝑛𝑛 → ∞, we got the integral.  As we approach ∞ for the number of 
rectangles, the limit of ‖Δ𝑥𝑥𝑖𝑖‖ → 0.  What does that mean?  It means the widths of each rectangle 
approaches zero.  This makes sense, as the more rectangles we have, the smaller each width will be. 
 
So taking the limit as 𝑛𝑛 → ∞ also implies the limit as ‖Δ𝑥𝑥𝑖𝑖‖ → 0, and taking the limit of both sides gives 
us: 
 

lim
‖Δ𝑥𝑥𝑖𝑖‖→0

𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) = lim
‖Δ𝑥𝑥𝑖𝑖‖→0

∑ 𝑓𝑓(𝑐𝑐𝑖𝑖)Δ𝑥𝑥 →    𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) =𝑛𝑛
𝑖𝑖=1   lim

𝑛𝑛→∞
∑ 𝑓𝑓(𝑐𝑐𝑖𝑖)Δ𝑥𝑥 = ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎
𝑛𝑛
𝑖𝑖=1 . 

 
 
STEPS FOR APPLYING THE FUNDAMENTAL THEOREM OF CALCULUS: 
 

1) ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑥𝑥)⌋𝑎𝑎𝑏𝑏
𝑏𝑏
𝑎𝑎 .  We took the general antiderivative of 𝑓𝑓(𝑥𝑥).  In doing so, the ∫ symbol 

disappeared, as did the 𝑑𝑑𝑑𝑑.  We also placed a bar after 𝐹𝐹(𝑥𝑥) with the limits of integration in the 
same positions. 
 

2) Next, we calculate 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎).  Note that we substitute the top number into 𝐹𝐹 and then 
subtract off 𝐹𝐹(𝑎𝑎), (the value at the bottom).  We get a numerical answer. 
 

3) You might ask why we don’t have a   “ + 𝐶𝐶”,  which we discovered we needed in Section 3.7.  
Observe since we now have subtraction (𝐹𝐹(𝑥𝑥) + 𝐶𝐶)⌋𝑎𝑎𝑏𝑏 = 

 
𝐹𝐹(𝑏𝑏) + 𝐶𝐶 − (𝐹𝐹(𝑎𝑎) + 𝐶𝐶) = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎). 



EXAMPLE: 

1) Use the Fundamental Theorem of Calculus to evaluate the following integrals: 
 

a) ∫ 2𝑥𝑥 𝑑𝑑𝑑𝑑 = 2𝑥𝑥2

2
�1

0 0

1
= 𝑥𝑥2⌋01 = 12 − 02 = 1.  So let’s go over these steps:   

 
First we took the antiderivative:  𝑥𝑥2 .  Notice the integral symbol ∫  disappeared as did the 
𝑑𝑑𝑑𝑑. 
 
Next, we observe that after the antiderivative, there is this bar with the limits of integration, 
⌋01.   

 
Then we performed the 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) part, substituting the top number, and then 
subtracting the bottom number substituted. 

 
b) ∫ (𝑥𝑥2 + 1) 𝑑𝑑𝑑𝑑: 4

0  Note that this is the same problem we have done.  We approximated its 
area in Section 1, and we found the area using the limit definition in Section 2.  We shall get 
the same results we got in Section 2 using the Fundamental Theorem of Calculus, and we 
will see how much easier it is than using the limit definition. 
 

∫ (𝑥𝑥2 + 1) 𝑑𝑑𝑑𝑑 =4
0 �𝑥𝑥

3

3
+ 𝑥𝑥��

0

4
= �4

3

3
+ 4� − �0

3

3
+ 0� = 64

3
+ 4 = 76

3
.  Notice it is the same 

answer from Section 2.  Also note how much easier and quicker it was.  We love the 
Fundamental Theorem of Calculus! 
 

c) ∫ cos 𝑥𝑥 𝑑𝑑𝑑𝑑 = sin𝑥𝑥⌋0
𝜋𝜋
2 = sin 𝜋𝜋

2
− sin 0 = 1. 

𝜋𝜋
2
0  

 
d) ∫ (𝑒𝑒𝑥𝑥 + 1) 𝑑𝑑𝑑𝑑 = (𝑒𝑒𝑥𝑥 + 𝑥𝑥)⌋01 = (𝑒𝑒1 + 1) − (𝑒𝑒0 + 0) = 𝑒𝑒1

0  
 

 
2) Find the area of the following functions over the given interval: 

 
a) 𝑦𝑦 = sin𝑥𝑥 + 𝑥𝑥,   [0,𝜋𝜋]:  We set up the integral ∫ (sin𝑥𝑥 + 𝑥𝑥) 𝑑𝑑𝑑𝑑.  𝜋𝜋

0 Next, we evaluate the 

integral:   ∫ (sin𝑥𝑥 + 𝑥𝑥) 𝑑𝑑𝑑𝑑 = �− cos 𝑥𝑥 + 𝑥𝑥2

2
�� 0𝜋𝜋 = �− cos 𝜋𝜋 + 𝜋𝜋2

2
� − �− cos 0 + 02

2
� = 1 +𝜋𝜋

0
𝜋𝜋2

2
+ 1 = 𝜋𝜋2

2
+ 2. 

 
b) 𝑦𝑦 = 𝑥𝑥2 ,   𝑦𝑦 = 0, 𝑥𝑥 = 1.  First we must find the bound (limits of integration) in 𝑥𝑥:  when 

 𝑦𝑦 = 0, 𝑥𝑥 = 0.  So we integrate over [0,1]. 
 
Next, we set up the integral ∫ 𝑥𝑥2 𝑑𝑑𝑑𝑑.1

0  



Now we evaluate the integral ∫ 𝑥𝑥2 𝑑𝑑𝑑𝑑 = 𝑥𝑥3

3
�
0

1
= 13

3
− 03

3
= 1

3
.1

0  

 
 

THE SECOND FUNDAMENTAL THEOREM OF CALCULUS:  (Sometimes referred to as the First 
Fundamental Theorem of Calculus): 
 
For this Theorem, we begin by looking at what we have done thus far:  We have evaluated integrals 
where the limits of integration were constants, i.e. of 𝑏𝑏 being the upper limit.  We now want to look at 𝑥𝑥 
(a variable) being the upper limit.  We don’t want to confuse ourselves by using 𝑥𝑥 as both the upper limit 
and also as the variable of integration, so we write:  𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑,𝑥𝑥

𝑎𝑎  where 𝑓𝑓 is a continuous 
function on [𝑎𝑎, 𝑏𝑏], and 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏.  If 𝑓𝑓 is positive, we view 𝐹𝐹(𝑥𝑥) as the area under the curve of 𝑓𝑓 from 𝑎𝑎 
to 𝑥𝑥, with 𝑥𝑥 being able to vary from 𝑎𝑎 to 𝑏𝑏 rather than having to be held constant. 
 
THE THEOREM STATES: 
 
If 𝑓𝑓 is continuous on [𝑎𝑎, 𝑏𝑏], then 𝐹𝐹 is defined by 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑,𝑥𝑥

𝑎𝑎    𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, is continuous on [𝑎𝑎, 𝑏𝑏] 
and differentiable on (𝑎𝑎, 𝑏𝑏), and 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). 
 
PROOF: 
 
We begin with the definition:  𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥

𝑎𝑎  
 
If 𝑥𝑥 and 𝑥𝑥 + ℎ are in (𝑎𝑎, 𝑏𝑏), then we take the derivative of 𝐹𝐹(𝑥𝑥) 
 

𝐹𝐹′(𝑥𝑥) = lim
ℎ→0

𝐹𝐹(𝑥𝑥 + ℎ)− 𝐹𝐹(𝑥𝑥)
ℎ

= 

 

lim
ℎ→0

∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 − ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥
𝑎𝑎

𝑥𝑥+ℎ
𝑎𝑎

ℎ
 

 

lim
ℎ→0

1
ℎ
∙ �� 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 − � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎

𝑥𝑥+ℎ

𝑎𝑎
� = 

 

lim
ℎ→0

1
ℎ
∙ �∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥+ℎ

𝑥𝑥 − ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥
𝑎𝑎

𝑥𝑥
𝑎𝑎 � = (From Property 6) in Section 2) 

 

lim
ℎ→0

1
ℎ
∙� 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑥𝑥+ℎ

𝑥𝑥
 

 
We will assume ℎ > 0.  Since 𝑓𝑓 is continuous on [𝑎𝑎, 𝑏𝑏], and both 𝑥𝑥 and 𝑥𝑥 + ℎ are in [𝑎𝑎, 𝑏𝑏], then 𝑓𝑓 is 
continuous on [𝑥𝑥, 𝑥𝑥 + ℎ].   
 



The Extreme Value Theorem guarantees there is an absolute maximum and an absolute minimum in 
[𝑥𝑥, 𝑥𝑥 + ℎ].  We let 𝑢𝑢 be the value of 𝑥𝑥 in which the absolute minimum occurs, and 𝑣𝑣 be the value of 𝑥𝑥 in 
which the absolute maximum occurs.  We let 𝑓𝑓(𝑢𝑢) = 𝑚𝑚 , the absolute minimum, and 𝑓𝑓(𝑣𝑣) = 𝑀𝑀, the 
absolute maximum.   
 
There is another comparison property of Integrals that states: 
 

If 𝑚𝑚 ≤ 𝑓𝑓(𝑥𝑥) ≤ 𝑀𝑀 for 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, then 𝑚𝑚(𝑏𝑏 − 𝑎𝑎) ≤ ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 ≤ 𝑀𝑀(𝑏𝑏 − 𝑎𝑎).𝑏𝑏
𝑎𝑎  

 
We apply this property to get: 
 

𝑚𝑚ℎ ≤ � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥+ℎ

𝑥𝑥
≤ 𝑀𝑀ℎ → 

 

𝑓𝑓(𝑢𝑢)ℎ ≤ � 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑥𝑥+ℎ

𝑥𝑥
≤ 𝑓𝑓(𝑣𝑣)ℎ → 

 

𝑓𝑓(𝑢𝑢) ≤ 1
ℎ ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥+ℎ

𝑥𝑥 ≤ 𝑓𝑓(𝑣𝑣) (Since we assumed ℎ > 0. ) 
 

Next recall:  𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

= ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥+ℎ
𝑥𝑥 . 

 
Therefore:  𝑓𝑓(𝑢𝑢) ≤ 1

ℎ ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥+ℎ
𝑥𝑥 ≤ 𝑓𝑓(𝑣𝑣) = 

 

𝑓𝑓(𝑢𝑢) ≤
𝐹𝐹(𝑥𝑥 + ℎ)− 𝐹𝐹(𝑥𝑥)

ℎ
≤ 𝑓𝑓(𝑣𝑣) 

 

Next we take lim
ℎ→0

�𝑓𝑓(𝑢𝑢) ≤ 𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

≤ 𝑓𝑓(𝑣𝑣)� 

 
Since 𝑢𝑢 and 𝑣𝑣 are both in [𝑥𝑥, 𝑥𝑥 + ℎ], then  
 
lim
ℎ→0

𝑓𝑓(𝑢𝑢) = lim
𝑢𝑢→𝑥𝑥

𝑓𝑓(𝑢𝑢) = 𝑓𝑓(𝑥𝑥)  and 

 
lim
ℎ→0

𝑓𝑓(𝑣𝑣) = lim
𝑣𝑣→𝑥𝑥

𝑓𝑓(𝑣𝑣) = 𝑓𝑓(𝑥𝑥)   

 
Because 𝑓𝑓 is continuous at 𝑥𝑥.  (We also note that ℎ → 0 implies that the interval [𝑥𝑥, 𝑥𝑥 + ℎ] is so small 
that all values in this interval are all approaching each other, hence lim

ℎ→0
𝑓𝑓(𝑢𝑢) = lim

𝑢𝑢→𝑥𝑥
𝑓𝑓(𝑢𝑢) = 𝑓𝑓(𝑥𝑥)  and 

lim
ℎ→0

𝑓𝑓(𝑣𝑣) = lim
𝑣𝑣→𝑥𝑥

𝑓𝑓(𝑣𝑣) = 𝑓𝑓(𝑥𝑥)).  

 

Hence, lim
ℎ→0

�𝑓𝑓(𝑢𝑢) ≤ 𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

≤ 𝑓𝑓(𝑣𝑣)� → 

 



 𝑓𝑓(𝑥𝑥) ≤ lim
ℎ→0

𝐹𝐹(𝑥𝑥 + ℎ)− 𝐹𝐹(𝑥𝑥)
ℎ

≤ 𝑓𝑓(𝑥𝑥) →    

 

lim
ℎ→0

𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

= 𝑓𝑓(𝑥𝑥) By the Squeeze Theorem. 

 

Now we observe that lim
ℎ→0

𝐹𝐹(𝑥𝑥+ℎ)−𝐹𝐹(𝑥𝑥)
ℎ

= 𝐹𝐹′(𝑥𝑥), 

 
So, 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)  where 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥

𝑎𝑎 . 
 
We note that the integral of the derivative is the original function 𝑓𝑓.  This also makes intuitive sense to 
us.  (Also note, we can do another proof for ℎ < 0, which is omitted here). 
 
 
EXAMPLE: 
 
Find 𝐹𝐹′(𝑥𝑥) if 𝐹𝐹(𝑥𝑥) = ∫ (𝑡𝑡2 + 1) 𝑑𝑑𝑑𝑑:𝑥𝑥

1   Since 𝑓𝑓(𝑡𝑡) is continuous, we get 𝐹𝐹′(𝑥𝑥) = 𝑥𝑥2 + 1.  (All we did was 
replace 𝑥𝑥 for 𝑡𝑡 into 𝑓𝑓). 
 
 
EXAMPLE: 
 

Find 𝐹𝐹′(𝑥𝑥) if 𝐹𝐹(𝑥𝑥) = ∫ sin 𝑡𝑡  𝑑𝑑𝑑𝑑:𝑥𝑥2

1   We notice something different about this problem right away.  
Hopefully you observed that the upper limit of integration is 𝑥𝑥2 instead of 𝑥𝑥.  The theorem applies to 𝑥𝑥 
as the upper limit.  So what do we do?  We will do a substitution:  Let 𝑢𝑢 = 𝑥𝑥2 .  We next take the 
derivative:  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 2𝑥𝑥 . 

 

So we get 𝑑𝑑
𝑑𝑑𝑑𝑑
�∫ sin 𝑡𝑡  𝑑𝑑𝑑𝑑𝑥𝑥2

1 � = 𝑑𝑑
𝑑𝑑𝑑𝑑
�∫ sin 𝑡𝑡  𝑑𝑑𝑑𝑑𝑢𝑢
1 � ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  (Chain Rule) = sin𝑢𝑢 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= (sin𝑢𝑢) ∙ 2𝑥𝑥 =

𝟐𝟐𝟐𝟐𝐬𝐬𝐬𝐬𝐬𝐬𝒙𝒙𝟐𝟐.  
 
 
  
SUMMARY: 
 
THE FUNDAMENTAL THEOREM OF CALCULUS: 
 
If 𝑓𝑓 is continuous on the closed interval [𝑎𝑎, 𝑏𝑏]: 
 

•  Then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎),𝑏𝑏
𝑎𝑎  where 𝐹𝐹 is any antiderivative of 𝑓𝑓 →    𝐹𝐹′ = 𝑓𝑓. 

 
• And, 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑,𝑥𝑥

𝑎𝑎    𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 is continuous on [𝑎𝑎, 𝑏𝑏] and differentiable on (𝑎𝑎, 𝑏𝑏), and 
𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). 



 
EXERCISES: 
 
Evaluate the following integrals using the Fundamental Theorem of Calculus: 
 

1) ∫ (𝑥𝑥2 − 4𝑥𝑥 + 7) 𝑑𝑑𝑑𝑑1
0  

 
2) ∫ (2𝑥𝑥 − 5) 𝑑𝑑𝑑𝑑1

0  
 

3) ∫ (4𝑥𝑥3 − 3𝑥𝑥2 + 𝑥𝑥 − 1) 𝑑𝑑𝑥𝑥2
1  

 
4) ∫ (𝑥𝑥4 − 2𝑥𝑥 +2

0 3) 𝑑𝑑𝑑𝑑 
 

5) ∫ 𝑥𝑥
1
3 𝑑𝑑𝑑𝑑1

−1  
 

6) ∫ �√𝑥𝑥 − 2
𝑥𝑥

+ 1
𝑥𝑥2
�  𝑑𝑑𝑑𝑑2

1  
 

7) ∫ (𝑥𝑥 − 2)(𝑥𝑥 + 3) 𝑑𝑑𝑑𝑑2
0  

 

8) ∫ �1
2
𝑒𝑒𝑥𝑥 − 𝑥𝑥

5
2 + 4𝑥𝑥�  𝑑𝑑𝑑𝑑1

0  

 
9) ∫ (sin𝑥𝑥 + sec2 𝑥𝑥 + 𝑒𝑒𝑥𝑥) 𝑑𝑑𝑑𝑑𝜋𝜋

0  
 

10) ∫ �√2 𝑥𝑥 − 1

𝑥𝑥
2
3
�  𝑑𝑑𝑑𝑑4

1  

 

11) ∫  𝑥𝑥
2−2𝑥𝑥+𝑥𝑥−1

𝑥𝑥
2
1  𝑑𝑑𝑑𝑑 

 

12) ∫  𝑥𝑥
2−2𝑥𝑥
√𝑥𝑥

3
1  𝑑𝑑𝑑𝑑 

 
13) ∫ 3𝑥𝑥  𝑑𝑑𝑑𝑑1

0  
 

14) ∫ 𝑥𝑥2(2𝑥𝑥 − 4) 𝑑𝑑𝑑𝑑3
0  

 

15) ∫  (cos 𝑥𝑥 + sec 𝑥𝑥 tan 𝑥𝑥) 𝑑𝑑𝑑𝑑
𝜋𝜋
4
0  

 

16) ∫ 2 csc2 𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
2
𝜋𝜋
6

 

 



17) ∫ � 1
1+𝑥𝑥2

− 2𝑥𝑥�  𝑑𝑑𝑑𝑑1
0  

 

18) ∫ � 1
√1−𝑥𝑥2

+ 𝑒𝑒𝑥𝑥�   𝑑𝑑𝑑𝑑
𝜋𝜋
2
0  

 
19) ∫ (𝑥𝑥2 + 2𝑥𝑥) 𝑑𝑑𝑑𝑑1

0  
 

20) ∫ √2𝜋𝜋 𝑑𝑑𝑑𝑑1
0  

 

Find the area of the following functions over the given interval: (Hint: for some problems, you may have 
to find the interval from the information given). 

21) 𝑦𝑦 = 2𝑥𝑥3 ,   [0,1] 
 

22) 𝑦𝑦 = 𝑒𝑒𝑥𝑥 ,   [0,2] 
 

23) 𝑦𝑦 = cos 𝑥𝑥 + 𝑥𝑥2 ,   �0, 𝜋𝜋
4
� 

 

24) 𝑦𝑦 = sec2 𝑥𝑥,   �0, 𝜋𝜋
3
� 

 
25) 𝑦𝑦 = 𝑥𝑥3 , 𝑦𝑦 = 0, 𝑥𝑥 = 2 

 
26) 𝑦𝑦 = 𝑥𝑥 − 𝑥𝑥2 , 𝑦𝑦 = 0 

 
Find the derivative of the function: 
 

27) 𝐹𝐹(𝑥𝑥) = ∫ √3𝑡𝑡2 + 4𝑡𝑡 𝑑𝑑𝑑𝑑 𝑥𝑥
2  

 
28) 𝐹𝐹(𝑥𝑥) = ∫ (sin2 𝑡𝑡 + cos3 𝑡𝑡) 𝑑𝑑𝑑𝑑𝑥𝑥

100  
 

29) 𝐹𝐹(𝑥𝑥) = ∫ ln 𝑡𝑡
√𝑡𝑡

 𝑑𝑑𝑡𝑡𝑥𝑥
𝜋𝜋  

 

30) 𝐹𝐹(𝑥𝑥) = ∫ cos 𝑡𝑡  𝑑𝑑𝑑𝑑𝑥𝑥2

1  
 

31) 𝐹𝐹(𝑥𝑥) = ∫ (2𝑡𝑡 − 𝑒𝑒𝑡𝑡) 𝑑𝑑𝑑𝑑√𝑥𝑥
2  

 
32) 𝐹𝐹(𝑥𝑥) = ∫ (𝑡𝑡2 + sin−1 𝑡𝑡) 𝑑𝑑𝑑𝑑2

𝑥𝑥   (Hint:  Rewrite the integral using one of the properties of definite 
integrals). 
 

33) 𝐹𝐹(𝑥𝑥) = ∫ sin 𝑡𝑡  𝑑𝑑𝑑𝑑𝑥𝑥
𝑥𝑥2   (Hint:  Rewrite using two of the properties of definite integrals). 



 

CHAPTER 4 
SECTION 4 

INDEFINITE INTEGRALS AND THE NET CHANGE THEOREM 
 

The Fundamental Theorem of Calculus showed connections between antiderivatives and definite 
integrals.  Because of this, the natural notation for the general antiderivative is an integral that we call 
an Indefinite Integral.  This means it does not have limits of integration.  It is not a number (nor an area), 
but a general antiderivative in which we will have a +𝐶𝐶.   
 

�𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑥𝑥) →   𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥). 

 
The Indefinite Integral represents a “family of functions”, with different values for 𝐶𝐶.  So the Definite 
Integral represents a value, or area; and the Indefinite Integral represents a function, or family of 
functions. 
 
We now make a table of Indefinite Integrals: 
 
 

∫ 𝑥𝑥𝑛𝑛  𝑑𝑑𝑑𝑑 =
𝑥𝑥𝑛𝑛+1

𝑛𝑛 + 1
+ 𝐶𝐶     𝑛𝑛 ≠ 1 

∫ 𝑒𝑒𝑥𝑥  𝑑𝑑𝑑𝑑 = 𝑒𝑒𝑥𝑥 + 𝐶𝐶 

∫ 𝑎𝑎𝑥𝑥  𝑑𝑑𝑑𝑑 =
𝑎𝑎𝑥𝑥

ln𝑎𝑎  
+ 𝐶𝐶 

 

∫
1
𝑥𝑥

 𝑑𝑑𝑑𝑑 = ln|𝑥𝑥| + 𝐶𝐶 

∫ cos 𝑥𝑥  𝑑𝑑𝑑𝑑 = sin𝑥𝑥 + 𝐶𝐶 
∫ sin𝑥𝑥 𝑑𝑑𝑑𝑑 = − cos 𝑥𝑥 + 𝐶𝐶 
∫ sec2 𝑥𝑥 𝑑𝑑𝑑𝑑 = tan 𝑥𝑥 + 𝐶𝐶 
∫ sec 𝑥𝑥 tan 𝑥𝑥  𝑑𝑑𝑑𝑑 = sec 𝑥𝑥 + 𝐶𝐶 

∫
1

√1− 𝑥𝑥2
 𝑑𝑑𝑑𝑑 = 𝑠𝑠𝑠𝑠𝑛𝑛−1 𝑥𝑥 + 𝐶𝐶 

∫
1

1 + 𝑥𝑥2
 𝑑𝑑𝑑𝑑 = tan−1 𝑥𝑥 + 𝐶𝐶 

∫ cosh 𝑥𝑥  𝑑𝑑𝑑𝑑 = sinh𝑥𝑥 + 𝐶𝐶 
∫ sinh𝑥𝑥  𝑑𝑑𝑑𝑑 = cosh 𝑥𝑥 + 𝐶𝐶 
∫ 𝑐𝑐𝑐𝑐(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝑐𝑐∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 
∫ [𝑓𝑓(𝑥𝑥) ± 𝑔𝑔(𝑥𝑥)] 𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 ± ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 

 
EXAMPLE: 
 
Evaluate the following Indefinite Integrals: 
 



1) ∫ (𝑥𝑥2 − 2𝑥𝑥) 𝑑𝑑𝑑𝑑 = 𝑥𝑥3

3
− 2𝑥𝑥2

2
+ 𝐶𝐶 = 𝑥𝑥3

3
− 𝑥𝑥2 + 𝐶𝐶 

2) ∫ sin𝑥𝑥 𝑑𝑑𝑑𝑑 = − cos 𝑥𝑥 + 𝐶𝐶 
 

3) ∫ �𝑥𝑥
1
3 − 1

𝑥𝑥
+ 𝑒𝑒𝑥𝑥�  𝑑𝑑𝑑𝑑 = 3

4
𝑥𝑥
4
3 − ln|𝑥𝑥| + 𝑒𝑒𝑥𝑥 + 𝐶𝐶 

 

4) ∫ �sec𝑥𝑥 tan𝑥𝑥 + 3𝑥𝑥 − 1
1+𝑥𝑥2

 � 𝑑𝑑𝑑𝑑 = sec 𝑥𝑥 + 3𝑥𝑥

ln 3
− arctan 𝑥𝑥 + 𝐶𝐶 

 
 
NET CHANGE THEOREM: 
 
The Integral of a rate of change is the net change: 
 

� 𝐹𝐹′(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎).
𝑏𝑏

𝑎𝑎
 

 
Application of the Net Change Theorem: 
 
Recall, that if an object moves along a straight line by a function 𝑠𝑠(𝑡𝑡) > 0, then 𝑣𝑣(𝑡𝑡) = 𝑠𝑠′(𝑡𝑡).   
So ∫ 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑 = 𝑠𝑠(𝑡𝑡2) − 𝑠𝑠(𝑡𝑡1)𝑡𝑡2

𝑡𝑡1
 is the net change, or displacement from time = 𝑡𝑡1 to time = 𝑡𝑡2.   

 
To calculate the total distance traveled, we have to consider 𝑣𝑣(𝑡𝑡) ≤ 0 and 𝑣𝑣(𝑡𝑡) ≥ 0.  Recall velocity can 
be positive or negative depending on if we are moving forward or backward.  Displacement can also be 
positive or negative (positive when moving right, and negative when moving left).  Distance, however, is 
never negative, (as it is a length).  So distance is ∫ |𝑣𝑣(𝑡𝑡)| 𝑑𝑑𝑑𝑑.𝑡𝑡2

𝑡𝑡1
 (We also refer to |𝑣𝑣(𝑡𝑡)| as speed). 

 
Velocity can be found from acceleration in the same manner. 
 
 
 
There are many other applications of the Net Change Theorem, which can be explored by the student. 
 
 
EXAMPLE: 
 
A particle moves in a straight line such that its velocity (as a function of time = 𝑡𝑡) is 𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 − 5𝑡𝑡 − 6. 
(In meters/second). 
 

a) Find the displacement for 0 ≤ 𝑡𝑡 ≤ 3 
b) Find the total distance traveled during this time. 

 



a) Displacement is ∫ (𝑡𝑡2 − 1) 𝑑𝑑𝑑𝑑 =3
0 �𝑡𝑡

3

3
− 𝑡𝑡��

0

3
= 9 − 3 = 6.  This means the particle ends up 6 meters 

to the right of where it started (after 3 𝑠𝑠), since the displacement is positive.  
 

b) The total distance traveled:  𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 − 1 = (𝑡𝑡 − 1)(𝑡𝑡 + 1), implies 𝑣𝑣(𝑡𝑡) ≤ 0  on  [0,1] and 𝑣𝑣(𝑡𝑡) ≥
0 on [1,3]. 

So distance = ∫ −(𝑡𝑡2 − 1) 𝑑𝑑𝑑𝑑 + ∫ (𝑡𝑡2 − 1) 𝑑𝑑𝑑𝑑 = �− 𝑡𝑡3

3
+ 𝑡𝑡��

0

1
+ �𝑡𝑡

3

3
− 𝑡𝑡��

1

3
= −1

3
+ 1 +3

1
1
0 9 − 3 − 1

3
+

1 = 22
3

 meters traveled. 

  



EXERCISES: 
 
Find the general indefinite integral: 
 

1) ∫ (3𝑥𝑥2 − 4𝑥𝑥 + 8) 𝑑𝑑𝑑𝑑 
 

2) ∫ (𝑥𝑥3 − 2𝑥𝑥2 + 4𝑥𝑥 − 9) 𝑑𝑑𝑑𝑑 
 

3) ∫ (5𝑥𝑥4 − 2𝑥𝑥2 + 12𝑥𝑥) 𝑑𝑑𝑑𝑑 
 

4) ∫ (2𝑥𝑥−3 + 𝑒𝑒𝑥𝑥 + 7) 𝑑𝑑𝑑𝑑 
 

5) ∫ (𝑥𝑥 − 1)(𝑥𝑥 + 3) 𝑑𝑑𝑑𝑑 
 

6) ∫ (𝑥𝑥2 + 2)(𝑥𝑥 − 5) 𝑑𝑑𝑑𝑑 
 

7) ∫ �2√𝑥𝑥 − 3
𝑥𝑥

+ 𝑥𝑥−2�  𝑑𝑑𝑑𝑑 

 
8) ∫ (2 sin𝑥𝑥 − 4 cos 𝑥𝑥) 𝑑𝑑𝑑𝑑 

 
9) ∫ (2𝑒𝑒𝑥𝑥 + sec2 𝑥𝑥) 𝑑𝑑𝑑𝑑 

 

10) ∫ �5
𝑥𝑥
− 2

𝑥𝑥2
+ 1

𝑥𝑥3
− 𝑥𝑥

3
�  𝑑𝑑𝑑𝑑 

 

11) ∫ �sec𝑥𝑥 tan𝑥𝑥 − 1
1+𝑥𝑥2

+ 𝑥𝑥
1
3 �  𝑑𝑑𝑑𝑑 

 
12) ∫ �√𝑥𝑥23 − 𝑥𝑥−5 − √2� 𝑑𝑑𝑑𝑑 

 

13) ∫ �𝑥𝑥
1
2−2𝑥𝑥+7
𝑥𝑥

�  𝑑𝑑𝑑𝑑 

 

14) ∫ �𝑥𝑥−5−𝑥𝑥
1
3

𝑥𝑥2
�  𝑑𝑑𝑑𝑑 

 

15) ∫ � 1
√1−𝑥𝑥2

+ sec2 𝑥𝑥 + 2
𝑥𝑥

 �  𝑑𝑑𝑑𝑑 

 
16) ∫ (7𝑥𝑥 + 7𝑒𝑒𝑥𝑥 + 𝑥𝑥7) 𝑑𝑑𝑑𝑑  

 
17) A particle moves in a straight line such that its velocity (as a function of time = 𝑡𝑡 is 𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 −

5𝑡𝑡 − 6. (In meters/second). 
 

a) Find the displacement for 0 ≤ 𝑡𝑡 ≤ 10 



b) Find the total distance traveled during this time. 
 

18) A particle moves in a straight line such that its velocity (as a function of time = 𝑡𝑡 is 𝑣𝑣(𝑡𝑡) = 𝑡𝑡2 −
4. (In meters/second). 

 
a) Find the displacement for 0 ≤ 𝑡𝑡 ≤ 5 
b) Find the total distance traveled during this time. 

  



CHAPTER 4 
SECTION 5 

THE SUBSITUTION RULE FOR INTEGRALS 
 

The Substitution Rule for Integrals is often referred to as “U-Substitution”.  What is this used for?  Recall 
the Chain Rule for Derivatives.  U-Substitution is basically a backwards Chain Rule for Antiderivatives.   
 
EXAMPLE: 
 
𝑓𝑓(𝑥𝑥) = (𝑥𝑥2 + 2)10 →    𝑓𝑓′(𝑥𝑥) = 10(𝑥𝑥2 + 2)9(2𝑥𝑥).  Hopefully, this looks familiar.  We used the Chain 
Rule to find the derivative.   
 
For integrals using “U-Substitution”, we take something that looks like the derivative function on the 
right, and make it look like the function on the left. 
 
Let’s simplify the 𝑓𝑓′(𝑥𝑥) function just slightly:  ∫ (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑. 
 

First, we choose our  𝑢𝑢:  We choose 𝑢𝑢 = 𝑥𝑥2 + 2.  Why did we do that?  Because 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑥𝑥.  We observe 
this to be the other function.  (We will see in a minute, that they will cancel).   
 
From 𝑢𝑢 = 𝑥𝑥2 + 2,  we find the differential:  𝑑𝑑𝑑𝑑 = 2𝑥𝑥 𝑑𝑑𝑑𝑑.  Next we solve for 𝑑𝑑𝑑𝑑.  𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

2𝑥𝑥
.     

 

Next, we substitute everything we have:  ∫ [𝑢𝑢9(2𝑥𝑥)] 𝑑𝑑𝑑𝑑
2𝑥𝑥

= ∫ 𝑢𝑢9 𝑑𝑑𝑑𝑑 = 𝑢𝑢10

10
+ 𝐶𝐶.   

 

Lastly, we back substitute in terms of 𝑥𝑥:  𝑢𝑢 = 𝑥𝑥2 + 2 →   𝑢𝑢
10

10
+ 𝐶𝐶 = �𝑥𝑥2+2�10

10
+ 𝐶𝐶. 

 
(Note if you take the derivative, you will get:  (𝑥𝑥2 + 2)9(2𝑥𝑥). 
 
 
THE SUBSITUTION RULES FOR INTEGRALS: 
 
If 𝑢𝑢 = 𝑔𝑔(𝑥𝑥) is a differentiable function whose range is an interval 𝐼𝐼, and 𝑓𝑓 is continuous on 𝐼𝐼, then  
∫ 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) 𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑. 
 
 
STEPS FOR USING U-SUBSITUTION: 
 

1) Choose your 𝑢𝑢.  Choose it to be the function whose derivative is the other function.  (Note:  This 
may be immediately obvious, or it could take some trial and error:  a bit like “guess and check” 
for factoring.)  (Also note that the derivative might have a different constant multiple, and that’s 
okay). 
 



2) Take the differential:  i.e. 𝑑𝑑𝑑𝑑 = 𝑔𝑔′(𝑥𝑥) 𝑑𝑑𝑑𝑑 
 

3) Substitute 𝑢𝑢, and 𝑑𝑑𝑑𝑑 into the integral.   
 

4) Cancel everything that will cancel.  (You should now only have one variable: 𝑢𝑢.  All the 𝑥𝑥-terms 
should cancel.  If they don’t, you probably chose the wrong function to be your 𝑢𝑢.  Go back and 
choose something else).  (In some instances, you did not choose incorrectly, and other methods 
need to be additionally employed). 
 

5) Integrate with respect to 𝑢𝑢. 
 

6) Back substitute in terms of 𝑥𝑥. 
 
 

EXAMPLE: 

Find the following indefinite integrals using u-substitution: 

1) ∫ (𝑥𝑥3 − 5)5𝑥𝑥2  𝑑𝑑𝑑𝑑.  We choose 𝑢𝑢 = 𝑥𝑥3 − 5.  Do you see why?  Its derivative is 3𝑥𝑥2 , which is a 
constant multiple times 𝑥𝑥2, which is our 𝑔𝑔′(𝑥𝑥). 

 
Next, we take the differential:  𝑑𝑑𝑑𝑑 = 3𝑥𝑥2 𝑑𝑑𝑑𝑑. 
 
Solve for 𝑑𝑑𝑑𝑑.  𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

3𝑥𝑥2
. 

 
Now, we substitute:  ∫ 𝑢𝑢5 ∙ 𝑥𝑥2 ∙ 𝑑𝑑𝑑𝑑

3𝑥𝑥2
= 1

3
∫ 𝑢𝑢5𝑑𝑑𝑢𝑢.  (Notice that the 𝑥𝑥2 canceled, and we pulled the 

1
3
 out in front of the integral from property 13 from Section 4.   

 

Now, we will integrate:  1
3
∫ 𝑢𝑢5𝑑𝑑𝑑𝑑 = 𝑢𝑢6

18
+ 𝐶𝐶. 

 

Lastly, we back substitute:  
�𝑥𝑥3−5�6

18
+ 𝐶𝐶. 

 
2) ∫ 2𝑥𝑥 ∙ cos 𝑥𝑥2 𝑑𝑑𝑑𝑑.  Choose 𝑢𝑢 = 𝑥𝑥2 , because 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑥𝑥2) = 2𝑥𝑥, and it will cancel.   

 
Next, 𝑑𝑑𝑑𝑑 = 2𝑥𝑥 𝑑𝑑𝑑𝑑 →   𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

2𝑥𝑥
 

 Substitute:  ∫ 2𝑥𝑥 cos𝑢𝑢 𝑑𝑑𝑑𝑑
2𝑥𝑥

= ∫ cos 𝑢𝑢  𝑑𝑑𝑑𝑑 = sin𝑢𝑢 + 𝐶𝐶 = sin𝑥𝑥2 + 𝐶𝐶.     

 
3) ∫ 𝑒𝑒2𝑥𝑥𝑑𝑑𝑑𝑑.  We choose 𝑢𝑢 = 2𝑥𝑥.  We observe that this works because 𝑑𝑑

𝑑𝑑𝑑𝑑
(2𝑥𝑥) = 2, which is a 

constant.   
 



𝑑𝑑𝑑𝑑 = 2 𝑑𝑑𝑑𝑑 →    𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
2

 

 
Substitute:  ∫ 𝑒𝑒𝑢𝑢 𝑑𝑑𝑑𝑑

2
= 1

2
∫ 𝑒𝑒𝑢𝑢 𝑑𝑑𝑑𝑑 = 1

2
 𝑒𝑒𝑢𝑢 + 𝐶𝐶 = 1

2
𝑒𝑒2𝑥𝑥 + 𝐶𝐶. 

 
 
Let us note that for ∫ 𝒂𝒂 ∙ 𝒆𝒆𝒃𝒃𝒃𝒃𝒅𝒅𝒅𝒅 = 𝒂𝒂

𝒃𝒃
 𝒆𝒆𝒃𝒃𝒃𝒃 + 𝑪𝑪.  We can prove this using U-substitution: 

 

Let 𝑢𝑢 = 𝑏𝑏𝑏𝑏 →    𝑑𝑑𝑑𝑑 = 𝑏𝑏 𝑑𝑑𝑑𝑑 →   𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑏𝑏

 
 

 ∫ 𝑎𝑎 ∙ 𝑒𝑒𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑 = 𝑎𝑎∫ 𝑒𝑒𝑢𝑢 𝑑𝑑𝑑𝑑
𝑏𝑏

= 𝑎𝑎
𝑏𝑏
∫ 𝑒𝑒𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑎𝑎

𝑏𝑏
 𝑒𝑒𝑢𝑢 + 𝐶𝐶 = 𝑎𝑎

𝑏𝑏
 𝑒𝑒𝑏𝑏𝑏𝑏 + 𝐶𝐶.  (We also note that 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑎𝑎
𝑏𝑏

 𝑒𝑒𝑏𝑏𝑏𝑏� = 𝑎𝑎 𝑒𝑒𝑏𝑏𝑏𝑏 .) 
 
We can now apply this rule instead of using U-substitution each time we have an integral of 
this form. 
 
 

4) ∫ 2𝑥𝑥
√𝑥𝑥2−2

 𝑑𝑑𝑑𝑑.   Choose 𝑢𝑢 = 𝑥𝑥2 − 2. 
 

𝑑𝑑𝑑𝑑 = 2𝑥𝑥 𝑑𝑑𝑑𝑑 →    𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
2𝑥𝑥

. 

 

Substitute:  ∫ 2𝑥𝑥
√𝑥𝑥2−2

 𝑑𝑑𝑑𝑑 = ∫ 2𝑥𝑥

𝑢𝑢
1
2

𝑑𝑑𝑑𝑑
2𝑥𝑥

= ∫ 𝑢𝑢−
1
2  𝑑𝑑𝑑𝑑 = 2 𝑢𝑢

1
2 + 𝐶𝐶 = 2 √𝑥𝑥2 − 2 + 𝐶𝐶 

 
 

5) ∫ √𝑥𝑥 + 1 𝑥𝑥2 𝑑𝑑𝑑𝑑.  This one involves a little trick:  Choose 𝑢𝑢 = 𝑥𝑥 + 1 →   𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑. 
 
Okay, so far so good, right?  But what about the 𝑥𝑥2?  It’s not going to cancel. 
 
Recall, that we need to have a single variable to integrate an integral (At least for a single 
integral.  Double and triple integrals will use multi-variables, which we discover later in a 
Calculus 3 course).   
 
The trick:  If 𝑢𝑢 = 𝑥𝑥 + 1, then 𝑥𝑥 = 𝑢𝑢 − 1. 
 

So, ∫ √𝑥𝑥 + 1 𝑥𝑥2 𝑑𝑑𝑑𝑑 = ∫ 𝑢𝑢
1
2 (𝑢𝑢 − 1)2 𝑑𝑑𝑑𝑑 = ∫ 𝑢𝑢

1
2 (𝑢𝑢2 − 2𝑢𝑢 + 1) 𝑑𝑑𝑑𝑑 = ∫ �𝑢𝑢

5
2 − 2𝑢𝑢

3
2 + 𝑢𝑢

1
2�  𝑑𝑑𝑑𝑑. 

 
Now, we have a form that we can integrate: 
 



∫ �𝑢𝑢
5
2 − 2𝑢𝑢

3
2 + 𝑢𝑢

1
2�  𝑑𝑑𝑑𝑑 =

2
7
𝑢𝑢
7
2 − 2 ∙

2
5
𝑢𝑢
5
2 +

2
3
𝑢𝑢
3
2 + 𝐶𝐶

=
2
7

(𝑥𝑥 + 1)
7
2 −

4
5

(𝑥𝑥 + 1)
5
2 +

2
3

(𝑥𝑥 + 1)
3
2 + 𝐶𝐶. 

6) ∫ tan𝑥𝑥 𝑑𝑑𝑑𝑑.  First we rewrite tan 𝑥𝑥 = sin 𝑥𝑥
cos𝑥𝑥

 

 

So ∫ tan 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫ sin 𝑥𝑥
cos𝑥𝑥

𝑑𝑑𝑑𝑑. 

 Choose 𝑢𝑢 = cos 𝑥𝑥  (Note:  It is common that 𝑢𝑢 will be the denominator in a rational function). 

 Then, 𝑑𝑑𝑑𝑑 = − sin𝑥𝑥 𝑑𝑑𝑥𝑥 →    𝑑𝑑𝑑𝑑 = − 𝑑𝑑𝑑𝑑
sin𝑥𝑥

 

 Substitute:  ∫ sin𝑥𝑥
cos 𝑥𝑥

𝑑𝑑𝑑𝑑 = −∫ sin 𝑥𝑥
𝑢𝑢

 𝑑𝑑𝑑𝑑
sin𝑥𝑥

= −∫ 1
𝑢𝑢
𝑑𝑑𝑑𝑑 = − ln|𝑢𝑢| + 𝐶𝐶 = − ln | cos 𝑥𝑥| + 𝐶𝐶 = 

 ln( | cos 𝑥𝑥|)−1 + 𝐶𝐶 = ln � 1
|cos𝑥𝑥|

�+ 𝐶𝐶 = ln | sec 𝑥𝑥| + 𝐶𝐶. 

 

SUBSTITUTION FOR DEFINITE INTEGRALS: 

Let’s return to the first example we had:  ∫ (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑. 

 Let us now revise it by putting in some limits of integration:   

� (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑.
1

0
   

There are two ways to evaluate this integral: 

The first is to evaluate it as an indefinite integral.  We did this above by applying U-substitution: 

We got:  ∫ (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑 = �𝑥𝑥2+2�10

10
+ 𝐶𝐶.  We can now apply the Fundamental Theorem of Calculus 

to get:  ∫ (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑 = �𝑥𝑥2+2�10

10
�
0

1

= 310

10
− 210

10
= 59,049

10
− 1024

10
= 58,025

10
= 11,605

2
.1

0  

 

There is another, easier (in my opinion), way to evaluate this integral.  I believe it is easier, because it 
eliminates a couple of steps. 

The way to do this, is to change the limits of integration from 𝑥𝑥 to 𝑢𝑢, when we do the original 
substitution: 

We chose 𝑢𝑢 = 𝑥𝑥2 + 2.  This implies when 𝑥𝑥 = 0 → 𝑢𝑢 = 2,  and when 𝑥𝑥 = 1 → 𝑢𝑢 = 3. 

So ∫ (𝑥𝑥2 + 2)9(2𝑥𝑥) 𝑑𝑑𝑑𝑑 = ∫ 𝑢𝑢9𝑑𝑑𝑑𝑑 = 𝑢𝑢10

10
�
2

3
= 310

10
− 210

10
= 11,605

2
.3

2
1
0  

We note that this method was a bit shorter and simpler. 



THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS: 

If 𝑔𝑔′(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏] and 𝑓𝑓(𝑥𝑥) is continuous on the range of 𝑢𝑢 = 𝑔𝑔(𝑥𝑥), then  

� 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) 𝑑𝑑𝑑𝑑 =
𝑏𝑏

𝑎𝑎
� 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑
𝑔𝑔(𝑏𝑏)

𝑔𝑔(𝑎𝑎)
 

 

EXAMPLE: 

� sin𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑.
𝜋𝜋
2

0
 

For this example we can choose 𝑢𝑢 to be either sin𝑥𝑥 or cos𝑥𝑥.  It does not matter in this particular case.  
Let us choose: 

 𝑢𝑢 = sin𝑥𝑥. 

Then 𝑑𝑑𝑑𝑑 = cos 𝑥𝑥 𝑑𝑑𝑑𝑑 →    𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
cos𝑥𝑥 

 

Let us change the limits of integration:  When 𝑥𝑥 = 0, 𝑢𝑢 = 0.  When 𝑥𝑥 = 𝜋𝜋
2

,𝑢𝑢 = 1. 

This gives us:  ∫ sin𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∫ u cos 𝑥𝑥 1
0

𝜋𝜋
2
0

𝑑𝑑𝑑𝑑
cos𝑥𝑥 

= ∫ 𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑢𝑢2

2
�1

0 0

1
= 1

2
. 

 

EXAMPLE: 

∫ 2𝑥𝑥−2
𝑥𝑥2−2𝑥𝑥+1

3
0  𝑑𝑑𝑑𝑑.  

We choose 𝑢𝑢 = 𝑥𝑥2 − 2𝑥𝑥 + 1.  Hopefully you see the numerator is the derivative of the denominator. 

When 𝑥𝑥 = 0,𝑢𝑢 =1, and when 𝑥𝑥 = 3,𝑢𝑢 = 4. 

Then 𝑑𝑑𝑑𝑑 = (2𝑥𝑥 − 2) 𝑑𝑑𝑑𝑑 gives: 

�
2𝑥𝑥 − 2

𝑥𝑥2 − 2𝑥𝑥 + 1

3

0
 𝑑𝑑𝑑𝑑 = �

1
𝑢𝑢

 𝑑𝑑𝑑𝑑 = ln|𝑢𝑢|⌋
4

3 3

4

= ln 4 − ln 3 = ln �
4
3
� 

 

EXAMPLE: 

∫ ln 𝑥𝑥
𝑥𝑥

 𝑑𝑑𝑑𝑑.2
1   We choose 𝑢𝑢 = ln𝑥𝑥, because 𝑑𝑑

𝑑𝑑𝑑𝑑
ln𝑥𝑥 = 1

𝑥𝑥
. 

When 𝑥𝑥 = 1,𝑢𝑢 = 0,  and when 𝑥𝑥 = 2, 𝑢𝑢 = ln 2 

𝑑𝑑𝑑𝑑 =
1
𝑥𝑥
𝑑𝑑𝑑𝑑 →    𝑑𝑑𝑑𝑑 = 𝑥𝑥 𝑑𝑑𝑑𝑑 



�
ln 𝑥𝑥
𝑥𝑥

 𝑑𝑑𝑑𝑑 = � 𝑢𝑢 𝑑𝑑𝑑𝑑 =
𝑢𝑢2

2
�
0

ln 2

=
(ln 2)2

2

ln 2

0

2

1
 

 

SYMMETRY IN INTEGRALS: 

INTEGRALS OF EVEN AND ODD FUNCTIONS: 

Let 𝑓𝑓 be continuous on [−𝑎𝑎,𝑎𝑎], then: 

1) If 𝑓𝑓 is even, i.e. 𝑓𝑓(−𝑥𝑥) = 𝑓𝑓(𝑥𝑥), then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 2∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑.𝑎𝑎
0

𝑎𝑎
−𝑎𝑎  

 
2) If 𝑓𝑓 is odd, i.e. 𝑓𝑓(−𝑥𝑥) = −𝑓𝑓(𝑥𝑥), then ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = 0.𝑎𝑎

–𝑎𝑎  
 

Observe how handy these can be.  When you recognize them, it can make calculations much easier.  For 
number 2), the answer is immediate.  For number 1), it is still shorter:  Whenever a limit of integration is 
0, it makes the calculation simpler (most of the time). 
 
Also note, that these are intuitive.  Even functions are symmetric about the 𝑥𝑥-axis, and odd functions are 
symmetric about the origin.  It follows that the area of even functions will be double, and that the area 
of odd functions will be zero.  Now we complete the formal proof: 
 
PROOF: 
 
We write:  ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 =𝑎𝑎

−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 +0
−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = −∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑𝑎𝑎

0
−𝑎𝑎
0

𝑎𝑎
0  using property 1) 

for Definite Integrals in Section 2. 
 
Next, we substitute 𝑢𝑢 = −𝑥𝑥, which implies 𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑.  (This is the method we use to find out if 𝑓𝑓 is 
even, odd, or neither).   
 
When 𝑥𝑥 = −𝑎𝑎, 𝑢𝑢 = 𝑎𝑎. 
 
Then, −∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = −∫ 𝑓𝑓(−𝑢𝑢)(−𝑑𝑑𝑑𝑑) = ∫ 𝑓𝑓(−𝑢𝑢) 𝑑𝑑𝑑𝑑,𝑎𝑎

0
𝑎𝑎
0

−𝑎𝑎
0  

 
So, ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(−𝑢𝑢) 𝑑𝑑𝑑𝑑 +𝑎𝑎

0
𝑎𝑎
−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑.𝑎𝑎

0  
 

1) When 𝑓𝑓 is even, 𝑓𝑓(−𝑢𝑢) = 𝑓𝑓(𝑢𝑢) → 
 

� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 =
𝑎𝑎

−𝑎𝑎
� 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑 +
𝑎𝑎

0
� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑎𝑎

0
= � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 +

𝑎𝑎

0
� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑎𝑎

0
= 2� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑎𝑎

0
. 

 
2) When 𝑓𝑓 is odd, 𝑓𝑓(−𝑢𝑢) = −𝑓𝑓(𝑢𝑢) → 

 



� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 =
𝑎𝑎

−𝑎𝑎
−� 𝑓𝑓(𝑢𝑢) 𝑑𝑑𝑑𝑑 +

𝑎𝑎

0
� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑎𝑎

0
= −� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 +

𝑎𝑎

0
� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑
𝑎𝑎

0
= 0. 

 
 

EXAMPLE: 
 
Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 , an even function: 
 

Then ∫ 𝑥𝑥2  𝑑𝑑𝑑𝑑 = 2∫ 𝑥𝑥2  𝑑𝑑𝑑𝑑 = 2𝑥𝑥3

3
�
0

1
= 2

3
.1

0
1
−1  

 
EXAMPLE: 
 
Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 , an odd function: 
 
Then ∫ 𝑥𝑥3  𝑑𝑑𝑑𝑑 = 0,4

−4  by the Symmetry Proof, and no further calculation is necessary.  (Now wasn’t that 
much easier and a big relief?!) 
 

  



EXERCISES: 
 
Use U-substitution to find the following general indefinite integrals: 
 

1) ∫ (𝑥𝑥2 − 7)8 2𝑥𝑥 𝑑𝑑𝑑𝑑 
 

2) ∫ (𝑥𝑥3 − 2)5 3𝑥𝑥2 𝑑𝑑𝑑𝑑 
 

3) ∫ (3𝑥𝑥2 + 9)3 𝑥𝑥 𝑑𝑑𝑑𝑑 
 

4) ∫ (4𝑥𝑥3 − 1)4 5𝑥𝑥2 𝑑𝑑𝑑𝑑 
 

5) ∫ (𝑥𝑥3 − 10)
1
3 2𝑥𝑥2 𝑑𝑑𝑑𝑑 

 
6) ∫ √𝑥𝑥2 + 4 3𝑥𝑥 𝑑𝑑𝑑𝑑 

 
7) ∫ √𝑥𝑥3 + 7 𝑥𝑥2  𝑑𝑑𝑑𝑑 

 
8) ∫ 1

√𝑥𝑥2−2
 3𝑥𝑥 𝑑𝑑𝑑𝑑  

 
9) ∫ (𝑥𝑥3 − 𝑥𝑥2 + 3)7 (3𝑥𝑥2 − 2𝑥𝑥) 𝑑𝑑𝑑𝑑 

 
10) ∫ (2𝑥𝑥3 − 4𝑥𝑥2 + 10)6 (6𝑥𝑥2 − 8𝑥𝑥) 𝑑𝑑𝑑𝑑 

 
11) ∫ (𝑥𝑥2 − 2𝑥𝑥)10 (𝑥𝑥 − 1) 𝑑𝑑𝑑𝑑 

 
12) ∫ (𝑥𝑥2 − 𝑥𝑥)11 (4𝑥𝑥 − 2) 𝑑𝑑𝑑𝑑 

 

13) ∫ 3𝑥𝑥2+4𝑥𝑥+1
𝑥𝑥3+2𝑥𝑥2+𝑥𝑥−1

 𝑑𝑑𝑑𝑑 
 

14) ∫ 2𝑥𝑥−9−𝑒𝑒𝑥𝑥

𝑥𝑥2−9𝑥𝑥+1−𝑒𝑒𝑥𝑥
  𝑑𝑑𝑑𝑑 

 
15) ∫ 6𝑥𝑥+9

√𝑥𝑥2+3𝑥𝑥
 𝑑𝑑𝑑𝑑 

 
16) ∫ 𝑒𝑒7𝑥𝑥  𝑑𝑑𝑑𝑑 

 
17) ∫ 1

3
 𝑒𝑒−2𝑥𝑥  𝑑𝑑𝑑𝑑 

 
18) ∫ 𝑒𝑒𝑥𝑥2 2𝑥𝑥 𝑑𝑑𝑑𝑑 

 
19) ∫ 𝑒𝑒3𝑥𝑥2 4𝑥𝑥 𝑑𝑑𝑑𝑑 



 

20) ∫ 2𝑒𝑒2𝑥𝑥−3𝑒𝑒𝑥𝑥+3𝑥𝑥2

𝑒𝑒2𝑥𝑥−3𝑒𝑒𝑥𝑥+𝑥𝑥3
 𝑑𝑑𝑑𝑑 

 
21) ∫ (3 − 𝑒𝑒𝑥𝑥)(3 − 𝑒𝑒𝑥𝑥) 𝑑𝑑𝑑𝑑 

 
22) ∫ 2 sin𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 

 
23) ∫ sin 5𝑥𝑥 𝑑𝑑𝑑𝑑 

 
24) ∫ sin2 𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑 

 
25) ∫ cot 𝑥𝑥  𝑑𝑑𝑑𝑑 

 

26) ∫ (ln 𝑥𝑥)3

𝑥𝑥
 𝑑𝑑𝑑𝑑 

 
27) ∫ sec2 𝑥𝑥 tan𝑥𝑥 𝑑𝑑𝑑𝑑 

 
28) ∫ √cos 𝑥𝑥 sin𝑥𝑥 𝑑𝑑𝑑𝑑 

 
29) ∫ sec2 𝑥𝑥 tan2 𝑥𝑥 𝑑𝑑𝑑𝑑 

 
30) ∫ sec2 𝑥𝑥 tan4 𝑥𝑥 𝑑𝑑𝑑𝑑 

 
31) ∫ (sin𝑥𝑥 + 1) (cos 𝑥𝑥 + 2) 𝑑𝑑𝑑𝑑 

 

32) ∫ sec2 𝑥𝑥+9𝑒𝑒3𝑥𝑥

tan 𝑥𝑥+3𝑒𝑒3𝑥𝑥
 𝑑𝑑𝑑𝑑 

 
33) ∫ arctan 𝑥𝑥

1+𝑥𝑥2
 𝑑𝑑𝑑𝑑 

 

34) ∫ 2 sin−1 𝑥𝑥
√1−𝑥𝑥2

 𝑑𝑑𝑑𝑑 

 
35) ∫ 1

4+𝑥𝑥2
 𝑑𝑑𝑑𝑑  (Hint:  Factor the 4 out of the denominator, then do the u-substitution) 

 
36)  ∫ √𝑥𝑥 − 2 3𝑥𝑥2 𝑑𝑑𝑑𝑑 

 
37) ∫ √𝑥𝑥 − 1 𝑥𝑥3 𝑑𝑑𝑑𝑑 

 
Evaluate the definite integral (Hint:  Use U-substitution): 
 

38) ∫ (𝑥𝑥2 + 1)3 2𝑥𝑥 𝑑𝑑𝑑𝑑1
0  

 



39) ∫ (4𝑥𝑥3 − 9)4 12𝑥𝑥2 𝑑𝑑𝑑𝑑1
0  

 

40) ∫ (ln 𝑥𝑥)2

𝑥𝑥
 𝑑𝑑𝑑𝑑3

1  
 

41) ∫ 𝑒𝑒2𝑥𝑥  𝑑𝑑𝑑𝑑3
0  

 

42) ∫ sin2 𝑥𝑥 cos 𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
4
0  

 
43) ∫ 2𝑥𝑥−3

𝑥𝑥2−3𝑥𝑥+7
 𝑑𝑑𝑑𝑑1

0  
 

44) ∫ 2𝑥𝑥 𝑒𝑒𝑥𝑥2𝑑𝑑𝑑𝑑1
0  

 

45) ∫ sec 𝑥𝑥 tan𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
4
0  

 

46) ∫ sec2 𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
3
0  

 
47) ∫ cos3 𝑥𝑥 sin𝑥𝑥 𝑑𝑑𝑑𝑑𝜋𝜋

0  
 

48) ∫ sec2 𝑥𝑥 tan𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
4
0  

 
49) ∫ 2arctan𝑥𝑥

1+𝑥𝑥2
1
0  𝑑𝑑𝑑𝑑 

 
50) ∫ 1

𝑥𝑥2+9
 𝑑𝑑𝑑𝑑1

0  
 

51) ∫ (𝑒𝑒3𝑥𝑥 − sin𝑥𝑥 cos 𝑥𝑥) 𝑑𝑑𝑑𝑑1
0   (Hint:  Use a property of integrals to rewrite as two integrals) 

 
52) ∫ (𝑥𝑥3 + 𝑥𝑥2 − 𝑥𝑥)5(3𝑥𝑥2 + 2𝑥𝑥 − 1) 𝑑𝑑𝑑𝑑2

1  
 

53) ∫ 𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥−𝑒𝑒
 𝑑𝑑𝑑𝑑3

2  

 

54) ∫ arcsin𝑥𝑥
√1−𝑥𝑥2

 𝑑𝑑𝑑𝑑
1
2
0  

 
Use symmetry to evaluate the following integrals more efficiently: 
 

55) ∫ cos 𝑥𝑥 𝑑𝑑𝑑𝑑
𝜋𝜋
2
−𝜋𝜋2

 

 
56) ∫ 2 sin𝑥𝑥 𝑑𝑑𝑑𝑑𝜋𝜋

−𝜋𝜋  



 
57) ∫ (𝑥𝑥3 + 𝑥𝑥) 𝑑𝑑𝑑𝑑100

−100  
 

58) ∫ (2𝑥𝑥4 + 𝑥𝑥2) 𝑑𝑑𝑑𝑑1
−1  


